MTAT.07.003 Cryptology II

Entity Authentication

Sven Laur
University of Tartu
Formal Syntax
The communication between the prover and verifier must be authentic.

To establish electronic identity, Charlie must generate \((sk, pk) \leftarrow \text{Gen}\) and convinces others that the public information \(pk\) represents him.

The entity authentication protocol must convince the verifier that his or her opponent possesses the secret \(sk\).

An entity authentication protocol is \textit{functional} if an honest verifier \(\mathcal{V}_{pk}\) always accepts an honest prover \(\mathcal{P}_{sk}\).
Classical impossibility results

Inherent limitations. Entity authentication is impossible
(i) if authenticated communication is unaffordable in the setup phase;
(ii) if authenticated communication is unaffordable in the second phase.

Conclusions

- It is impossible to establish legal identity without physical measures.
- Any smart card is susceptible to physical attacks regardless of the cryptographic countermeasures used to authenticate transactions.
- Secure e-banking is impossible if the user does not have full control over the computing environment (secure e-banking is practically impossible).
Entity authentication is possible only if all participants have set up a network with authenticated communication links.

A role of an entity authentication protocol is to establish a convincing bound between physical network address and legal identities.

A same legal identity can be in many physical locations and move from one physical node to another node.
Challenge-Response Paradigm
Salted hashing

Global setup:
Authentication server \mathcal{V} outputs a description of a hash function h.

Entity creation:
A party \mathcal{P} chooses a password $sk \leftarrow \{0, 1\}^\ell$ and a nonce $r \leftarrow \{0, 1\}^k$. The public authentication information is $pk = (r, c)$ where $c \leftarrow h(sk, r)$.

Entity authentication:
To authenticate him- or herself, \mathcal{P} releases sk to the server \mathcal{V} who verifies that the hash value is correctly computed, i.e., $c = h(sk, r)$.

Theorem. If h is (t, ε)-secure one-way function, then no t-time adversary \mathcal{A} without sk can succeed in the protocol with probability more than ε.

- There are no secure one-way functions for practical sizes of sk.
- A malicious server can completely break the security.
RSA based entity authentication

Global setup:
Authentication server \mathcal{V} fixes the minimal size of RSA keys.

Entity creation:
A party \mathcal{P} runs a RSA key generation algorithm $(pk, sk) \leftarrow \text{Gen}_{\text{rsa}}$ and outputs the public key pk as the authenticating information.

Entity authentication:
1. \mathcal{V} creates a challenge $c \leftarrow \text{Enc}_{pk}(m)$ for $m \leftarrow_u \mathcal{M}$ and sends c to \mathcal{P}.
2. \mathcal{P} sends back $\overline{m} \leftarrow \text{Dec}_{sk}(c)$.
3. \mathcal{V} accepts the proof if $m = \overline{m}$.

This protocol can be generalised for any public key cryptosystem. The general form of this protocol is known as challenge-response protocol. This mechanism provides explicit security guarantees in the TLS protocol.
The most powerful attack model

Consider a setting, where an adversary \mathcal{A} can impersonate verifier \mathcal{V}

- The adversary \mathcal{A} can execute several protocol instances with the honest prover \mathcal{P} in parallel to spoof the challenge protocol.
- The adversary \mathcal{A} may use protocol messages arbitrarily as long as \mathcal{A} does not conduct the crossmaster attack.

Let us denote the corresponding success probability by

$$\text{Adv}^{\text{ent-auth}}(\mathcal{A}) = \Pr \left[(\text{pk}, \text{sk}) \leftarrow \text{Gen} : \mathcal{V}^{\mathcal{A}} = 1 \right] .$$
Corresponding security guarantees

Theorem. If a cryptosystem used in the challenge-response protocol is (t, ε)-IND-CCA2 secure, then for any t-time adversary A the corresponding success probability $\text{Adv}^{\text{ent-auth}}(A) \leq \frac{1}{|M|} + \varepsilon$.

Proof. A honest prover acts as a decryption oracle.

The nature of the protocol

▷ The protocol proves only that the prover has access to the decryption oracle and therefore the prover must *possess* the secret key sk.

▷ The possession of the secret key sk does not imply the *knowledge* of it. For example, the secret key sk might be hardwired into a smart card.

▷ Usually, the inability to decrypt is a strictly stronger security requirement than the ability to find the secret key.

▷ *Knowledge* is permanent whereas *possession* can be temporal.
Proofs of knowledge
Schnorr identification protocol

The group $G = \langle g \rangle$ must be a DL group with a prime cardinality q.

- The secret key x is the discrete logarithm of y.
- The verifier V is assumed to be semi-honest.
- The prover P is assumed to be potentially malicious.
- We consider only security in the standalone setting.
Zero-knowledge principle

Even if Lucy is honest
▷ she might learn something about the secret sk.

since
▷ messages α and γ depend on the secret sk.

If Lucy does not interact with Charlie then nothing about the secret sk is revealed.

Lucy should be equally successful in both experiments.
Simulation principle

Even if Lucy is *honest* she might learn something about the secret sk.

Since messages α and γ depend on the secret sk.

Since Lucy is *honest* the value of β is known by her before the protocol and Snoopy can use pk and β to simulate the other messages.

Lucy should not be able to distinguish between these two experiments.
Zero-knowledge property

Theorem. If a t-time verifier V_\ast is semi-honest in the Schnorr identification protocol, then there exists $t + O(1)$-algorithm V_\circ that has the same output distribution as V_\ast but do not interact with the prover P.

Proof.
Consider a code wrapper S that chooses $\beta \leftarrow u \mathbb{Z}_q$ and $\gamma \leftarrow u \mathbb{Z}_q$ and computes $\alpha \leftarrow g^\gamma \cdot y^{-\beta}$ and outputs whatever V_\ast outputs on the transcript (α, β, γ).

- If $x \neq 0$, then $\gamma = \beta + xk$ has indeed a uniform distribution.
- For fixed β and γ, there exist only a single consistent value of α.

□

Rationale: Semi-honest verifier learns nothing from the interaction with the prover. The latter is known as zero-knowledge property.
Knowledge-extraction lemma

Given two runs with a coinciding prefix \(\alpha \)

\[
\begin{align*}
\beta & \quad \alpha = g^k \\
\beta' & \quad \gamma = k + \beta x \\
\gamma' & = k + \beta' x
\end{align*}
\]

We can extract the secret key \(x = \frac{\gamma - \gamma'}{\beta - \beta'} \).

This property is known as **special-soundness**.

- If adversary \(A \) succeeds with probability 1, then we can extract the secret key \(x \) by rewinding \(A \) to get two runs with a coinciding prefix \(\alpha \).
- If adversary \(A \) succeeds with a non-zero probability \(\varepsilon \), then we must use more advanced knowledge-extraction techniques.
Find two ones in a row

Let $A(r, c)$ be the output of the honest verifier $\mathcal{V}(c)$ that interacts with a potentially malicious prover $\mathcal{P}_*(r)$.

- Then all matrix elements in the same row $A(r, \cdot)$ lead to same α value.
- To extract the secret key sk, we must find two ones in the same row.
- We can compute the entries of the matrix on the fly.

We derive the corresponding security guarantees a bit later.
Modified Fiat-Shamir identification protocol

\[v = s^2 \]
\[\beta \leftarrow \{0, 1\} \]
\[s \in \mathbb{Z}^*_n \]
\[\alpha = r^2 \]
\[\gamma = rs^\beta \]
\[r \leftarrow \mathbb{Z}^*_n \]

Halt if \(\gamma \notin \mathbb{Z}^*_n \)

\[\gamma^2 = r^2 s^{2\beta} = \alpha v^\beta \]

All computations are done in \(\mathbb{Z}_n \), where \(n \) is an RSA modulus.

- The secret key \(s \) is a square root of \(v \).
- The verifier \(V \) is assumed to be semi-honest.
- The prover \(P \) is assumed to be potentially malicious.
- We consider only security in the standalone setting.
Zero-knowledge property

Theorem. If a t-time verifier \mathcal{V}_* is semi-honest in the modified Fiat-Shamir identification protocol, then there exists $t + O(1)$-algorithm \mathcal{V}_o that has the same output distribution as \mathcal{V}_* but do not interact with the prover \mathcal{P}.

Proof.
Consider a code wrapper \mathcal{S} that chooses $\beta \leftarrow \{0, 1\}$, $\gamma \leftarrow \mathbb{Z}_n^*$, computes $\alpha \leftarrow v^{-\beta} \cdot \gamma^2$ and outputs whatever \mathcal{V}_* outputs on the transcript (α, β, γ).

▷ Since s is invertible, we can prove that $s \cdot \mathbb{Z}_n^* = \mathbb{Z}_n^*$ and $s^2 \cdot \mathbb{Z}_n^* = \mathbb{Z}_n^*$.
As a result, γ is independent of β and has indeed a uniform distribution.

▷ For fixed β and γ, there exist only a single consistent value of α.

□
Knowledge-extraction lemma

Theorem. The Fiat-Shamir protocol is specially sound.

Proof. Assume that a prover P_\ast succeeds for both challenges $\beta \in \{0, 1\}$:

$$
\begin{align*}
\gamma_0^2 &= \alpha, \\
\gamma_1^2 &= \alpha \nu, \\
\implies \frac{\gamma_1}{\gamma_0} &= \sqrt{\nu}.
\end{align*}
$$

The corresponding extractor construction K:

- Choose random coins r for P_\ast.
- Run the protocol with $\beta = 0$ and record γ_0
- Run the protocol with $\beta = 1$ and record γ_1
- Return $\zeta = \frac{\gamma_1}{\gamma_0}$
Bound on success probability

Theorem. Let v and n be fixed. If a potentially malicious prover P_* succeeds in the modified Fiat-Shamir protocol with probability $\varepsilon > \frac{1}{2}$, then the knowledge extractor K^{P_*} returns \sqrt{v} with probability $\varepsilon - \frac{1}{2}$.

Proof. Consider the success matrix $A(r, c)$ as before. Let p_1 denote the fraction rows that contain only single one and p_2 the fraction of rows that contain two ones. Then evidently $p_1 + p_2 \leq 1$ and $\frac{p_1}{2} + p_2 \geq \varepsilon$ and thus we can establish $p_2 \geq \varepsilon - \frac{1}{2}$. □

Rationale: The knowledge extraction succeeds in general only if the success probability of P_* is above $\frac{1}{2}$. The value $\kappa = \frac{1}{2}$ is known as knowledge error.
Matrix Games
Classical algorithm

Task: Find two ones in a same row.

Rewind:
1. Probe random entries $A(r, c)$ until $A(r, c) = 1$.
2. Store the matrix location (r, c).
3. Probe random entries $A(r, c)$ in the same row until $A(r, \overline{c}) = 1$.
4. Output the location triple (r, c, \overline{c}).

Rewind-Exp:
1. Repeat the procedure Rewind until $c \neq \overline{c}$.
2. Use the knowledge-extraction lemma to extract sk.
Average-case running time

Theorem. If a $m \times n$ zero-one matrix A contains ε-fraction of nonzero entries, then the Rewind and Rewind-Exp algorithm make on average

$$E[\text{probes}|\text{Rewind}] = \frac{2}{\varepsilon}$$

$$E[\text{probes}|\text{Rewind-Exp}] = \frac{2}{\varepsilon - \kappa}$$

probes where $\kappa = \frac{1}{n}$ is a *knowledge error*.

Proof. We prove this theorem in another lecture.
Strict time bounds

Markov’s inequality assures that for a non-negative random variable probes

\[
\Pr \left[\text{probes} \geq \alpha \right] \leq \frac{\mathbb{E}[\text{probes}]}{\alpha}
\]

and thus Rewind-Exp succeeds with probability at least \(\frac{1}{2} \) after \(\frac{4}{\varepsilon - \kappa} \) probes.

If we repeat the experiment \(\ell \) times, we the failure probability goes to \(2^{-\ell} \).
From Soundness to Security
Soundness and subjective security

Assume that we know a constructive proof:

If for fixed pk a potentially malicious t-time prover P_* succeeds with probability $\varepsilon > \kappa$, then a knowledge extractor K^P that runs in time $\tau(\varepsilon) = O\left(\frac{t}{\varepsilon - \kappa}\right)$ outputs sk with probability $1 - \varepsilon_2$.

and we believe:

No human can create a $\tau(\varepsilon_1)$-time algorithm that computes sk from pk with success probability at least $1 - \varepsilon_2$.

then it is rational to assume that:

No human without the knowledge of sk can create a algorithm P_* that succeeds in the proof of knowledge with probability at least ε_1.

Caveat: For each fixed pk, there exists a trivial algorithm that prints out sk. Hence, we cannot get objective security guarantees.
Soundness and objective security

Assume that we know a constructive proof:

If for a fixed pk a potentially malicious t-time prover P_* succeeds with probability $\varepsilon > \kappa$, then a knowledge extractor K^P that runs in time $\tau(\varepsilon) = O\left(\frac{t}{\varepsilon - \kappa}\right)$ outputs sk with probability $1 - \varepsilon^2$.

and know a mathematical fact that any $\tau(2\varepsilon_1)$-time algorithm A

$$\Pr[(pk, sk) \leftarrow Gen : A(pk) = sk] \leq \varepsilon_1(1 - \varepsilon_2)$$

then we can prove an average-case security guarantee:

For any t-time prover P_* that does not know the secret key

$$\text{Adv}^{\text{ent-auth}}(A) = \Pr\left[(pk, sk) \leftarrow Gen : \mathcal{V}^{P_*}(pk) = 1\right] \leq 2\varepsilon_1 .$$
Objective security guarantees

Schnorr identification scheme

If \mathbb{G} is a DL group, then the Schnorr identification scheme is secure, where the success probability is averaged over all possible runs of the setup Gen.

Fiat-Shamir identification scheme

Assume that modulus n is chosen form a distribution \mathcal{N} of RSA moduli such that on average factoring is hard over \mathcal{N}. Then the Fiat-Shamir identification scheme is secure, where the success probability is averaged over all possible runs of the setup Gen and over all choices of modulus n.