MTAT.07.003 Cryptology II Spring 2008 / Homework 1

- 1. Let \mathbb{G} be a finite group such that all elements $y \in \mathbb{G}$ can be expressed as powers of $g \in \mathbb{G}$. Then the discrete logarithm problem is following. Given $y \in \mathbb{G}$, find a smallest integer x such that $g^x = y$ in finite group \mathbb{G} . Discrete logarithm problem is known to be hard in general, i.e., all universal algorithms for computing logarithm run in time $\Omega(\sqrt{|\mathbb{G}|})$.
 - (a) Show that for a fixed group \mathbb{G} , there exists a Turing machine that finds the discrete logarithm for every $y \in \mathbb{G}$ in $O(\log_2 |\mathbb{G}|)$ steps.
 - (b) Show that for a fixed group G, there exists an analogous Random Access Machine that achieves the same efficiency.
 - (c) Generalise the previous construction and show that for every fixed function $f : \{0,1\}^n \to \{0,1\}^m$ there exists a Turing machine and a Random Access Machine such that they compute f(x) for every input $x \in \{0,1\}^n$ in O(n+m) steps.
 - (d) Are these constructions also valid in practise? Explain why these inconsistencies disappear when we formalise algorithms through universal computing devices.

Hint: What is the time-complexity of binary search algorithms?

- 2. Consider a classical Turing machine without internal working tapes, i.e., the Turning machine has a single one-sided (input) tape that initially contains inputs and must contain the desired output after the execution.
 - (a) Show that all sorting algorithms take at least $\Omega(n^2)$ steps where *n* is the total length of inputs x_1, \ldots, x_k . What is the time-complexity of best sorting algorithms? Explain this contradiction.
 - (b) Does the minimal time-complexity change if the Turing machine has internal working tapes?
 - (c) Sketch how one can simulate execution of Random Access Machines on a Turing machine. What is the corresponding overhead?
 - (*) Construct a set of tasks that can be implemented significantly more efficiently on Turing machines with $\ell+1$ working tapes than on Turing machines with ℓ tapes.

Hint: It is well-known fact that reversing *n*-bit string takes $\Omega(n^2)$ steps on a Turing machine without working tapes.

- 3. Bob has a biased coin such that in each throw the probability of getting a tail is α . Additionally, assume that all coin tosses are independent.
 - (a) How many throws are needed on average to see the first tail?
 - (b) How many throws are needed on average to see k tails?

Now consider a scenario, where Bob must see at least two tails to succeed.

- (c) How many throws are needed to succeed with probability at least $\frac{1}{2}$? Give a simple and safe upper bound on the number of throws.
- (d) Show that Bob must make at least $\Omega(\frac{1}{\alpha})$ throws to achieve constant success probability in the process $\alpha \to 0$.
- (e) How many throws are needed to achieve exponentially small failure probability ε ?

Hints: Use Markov's and Chebyshev's inequalities. Answers of the questions (c) and (e) are tightly connected.

- 4. A cryptosystem is a triple of algorithms $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ such that the equality $\mathcal{D}(\mathcal{E}(m, k), k) = m$ holds for all messages $m \in \mathcal{M}$ and keys $k \leftarrow \mathcal{K}$. Cryptosystem is perfectly secure if a ciphertext c reveals nothing about the corresponding message m, i.e., $\Pr[m|c] = \Pr[m]$.
 - (a) Prove that cryptosystem is perfectly secure only if H(m|c) = H(m). What about the implication to the other direction?
 - (b) Show that $H(k, m, c) \ge H(m|c) + H(c)$. For which enciphering algorithms does the equality H(k, m, c) = H(m|c) + H(c) hold?
 - (c) Show that H(k, m, c) = H(k) + H(c|k). Conclude that cryptosystem is perfectly secure only if $H(k) \ge H(m)$.
 - (d) Show that H(k|c) = H(m) + H(k) + H(c|m, k) H(c). What does the result mean in practise?
- 5. Estimate how much time is needed to break the following three file encryption methods without using cipher-specific attacks.
 - (a) The file is encrypted with 128-bit AES cipher and the key is stored in a special file that is protected with a password. Namely, the key is encrypted with another key that is derived form the password.
 - (b) The file is encrypted with old 56-bit DES cipher and the key is stored in the special file that is encrypted with a public key. The corresponding secret key is stored in the ID card.
 - (c) The file is encrypted with 80-bit IDEA cipher and the key is stored in the special file that is encrypted with a public key. The corresponding secret key is stored in the TPM chip.
- 6. Let \mathcal{X}_0 be a uniform distribution over \mathbb{Z}_{16} and let \mathcal{X}_1 be a uniform distribution over $\{0, 2, 4, 6, 8, 10, 12, 14\}$.
 - (a) What is the statistical difference between \mathcal{X}_0 and \mathcal{X}_1 ?
 - (b) What is the best distinguishing strategy if we can only compare the sample x with other values up to t times? Consider the same dependency for the AND and GT predicates.