
MTAT.07.003 Cryptology II
Spring 2008 / Homework 6

1. To minimise memory footprint in servers, operational information is often
stored by clients and provided on demand. Web cookies are the most
famous example. Such a storage strategy opens up new attack vectors,
since malicious clients can provide inconsistent data that might lead to
crashes or a malicious code injection.

(a) Design simple integrity tests based on collision resistant hash function
if the stored data is always used as a single unit.

(b) Provide a solution if stored data is structured and only few substruc-
tures are used in each operation. For example, the entire file system
is stored at client cite who can potentially alter it.

(c) Design a data protection model for BitTorrent like application, where
the data is hosted by many potentially malicious sub-servers and a
client assembles the entire file by combining the data streams.

(d) The MD5 hash function was recently shown to be weak, i.e., it is
possible to find collisions. However, the attacker cannot control the
values of colliding messages. Are now all integrity protection mech-
anisms based on MD5 insecure or not?

Clarification: The MD5 hash function is iterative

f∗(m1, . . . mn) = f(f(· · · f(f(iv, m1), m2), . . . , mn−1), mn)

where f : T ×M→ T is a dedicated compression function.

Compute all corresponding security guarantees provided that the hash
function is sampled form the (t, ε)-collision-resistant function family H.

2. There are several other properties that hash function families can have
besides collision resistance.

• A hash function family H is (t, ε)-secure one-way function family if
for any t-time adversary A

Pr [h←
u
H, m←

u
M : A(h, h(m)) = m] ≤ ε .

• A hash function family H is (t, ε)-secure against second preimage if
for any t-time adversary A

Pr [h←
u
H, m←

u
M, m1 ← A(h, m0) : m0 6= m1 ∧ h(m0) = h(m1)] ≤ ε .

Establish the corresponding homological classification of these three prop-
erties under the assumption that H is a compressing function family. Pro-
vide the corresponding reductions.

(a) Show that collision resistance implies security against second preim-
age attacks.

1



(b) Show that security against second preimage attacks implies one-
wayness.

(c) Give interpretation to all three properties. Is the MD5 function still
secure against second preimage attacks?

(⋆) Give the corresponding separations that show that the corresponding
inclusions are strict under the assumption that H is compressing
function family.

3. The main drawback of the modified Naor commitment scheme is message
expansion—to commit one bit we must send n bits. One possibility is to
increase the size of the message space. Let the message space M be a
subset of a finite field (F; +,×) such that we can treat all elements of F

as n-bit strings. Then we can define modified commitment scheme:

Gen
[

pk←
u

F
∗

return pk

Compk(x)






d← {0, 1}
k

c← f(d)⊕ x · pk

return (c, d)

Openpk(c, d)






y ← c⊕ f(d)

if y /∈ pk×M then return ⊥

else return y × pk−1

Establish the corresponding security guarantees under the assumption
that f : {0, 1}

k
→ {0, 1}

n
is a (t1, ε1)-pseudorandom generator.

How big must be the message spaceM⊆ F to achieve reasonable security
guarantees against double openings?

Hint: How many decommitment pairs can lead to a double opening? How
is this number related to the size of F andM?

4. Another way to improve the modified Naor commitment scheme is to use
a collision resistant hashing to build a list commitment scheme on top of
the ordinary commitment scheme:

Gen






pk←
u
{0, 1}

n

h←
u
H

return (pk, h)

Compk,h(x1, . . . , xℓ)






(ci, di)← Naor-Compk(xi), i = 1, . . . , ℓ

c∗ ← h(c1, . . . , cℓ)

return (c∗, (c1, . . . , cℓ, d1, . . . , dℓ))

where the decommitment procedure just verifies c∗ = h(c1, . . . , cℓ) and
restores xi ← Openpk(ci, di) for i = 1, . . . , ℓ.

(a) Establish security guarantees under the assumption that the basic
commitment scheme is (t1, ε1)-hiding and (t2, ε2)-binding and H is a
(t3, ε3)-collision resistant hash function family.

(b) Can we use a pseudorandom generator f for compacting the decom-
mitment? What happens if we generate d0, . . . , dℓ−1 by stretching a
single master seed d∗? Provide corresponding security guarantees.

2



(c) Modify the compaction strategy so that it is possible to open indi-
vidual bits without leaking information about the others.

5. One of the most elegant properties of additively homomorphic commit-
ments is the ability to do verifiable shuffling. As an example consider the
following card shuffling protocol:

P1 generates a random permutation π : {1, . . . , 36} → {1, . . . , 36}. Let
P be the corresponding 36×36 zero-one matrix such that π(y) = Py

for any n-element vector y and let (cij , dij)← Compk(pij). Next, P1

sends the matrix of commitments cij to P2.

P2 computes randomly shuffled card pack. First P1 chooses a random
permutation x1, . . . , x36 of the set {1, . . . , 36}. Next, P2 computes

ei ← cx1

i1 · c
x2

i2 · · · c
xn

in c∗i ,

where (c∗i , d
∗

i )← Compk(0), and sends e1, . . . , en to P2.

(a) Prove that the values e1, . . . , en are indeed randomly shuffled com-
mitments of x1, . . . , xn.

(b) Prove that neither P1 not P2 cannot guess where is the commitment
to 36 among e1, . . . , en if commitment is (t, ε)-hiding.

(c) Prove that P1 and P2 can release cards one by one and one can detect
cheating in the release phase if commitment scheme is (t, ε1)-binding.

(d) How P1 can prove that cij are indeed commitments to the permu-
tation matrix under the assumption that cij are guaranteed to be
commitments of zeros or ones?

Hint: Can one characterise permutation matrices in terms of row
and column sums.

(⋆) Use cut-and-choose techniques to make the protocol secure against
malicious corruption in the dealing phase.

6. Consider the following simple user-aided key agreement protocol. The
public key pk of a server P1 is known to all participants. If a participant
P2 wants to connect to P1 it generates a random session key k ←

u
K and a

short authentication nonce r ←
u
{0, . . . , 9999} and sends Encpk(k‖r) to P1.

The server P1 recovers k and r and sends r as an SMS to the client P2. The
client P2 halts if the SMS does not correspond to his or her authentication
nonce. Prove that the protocol is secure under the assumptions that the
cryptosystem is IND-CCA2 secure and no adversary can alter the SMS.
The adversary can alter the ciphertext.

7. To prove that the Blum coin flipping protocol between parties P1 and P2 is
secure in a strong sense, we need to construct code wrappers for the ideal
world that simulate the missing real world messages. For clarity, let P∗

1

3



and P∗

2
denote potentially malicious participants and let ω1 and ω2 denote

the random coins used by them. Let the simulators be the following

S
P

∗

1

1
(y, pk)



























































ω1 ←u Ω1, c← P
∗

1
(pk; ω1)

d0 ← P
∗

1
(0; ω1), d1 ← P

∗

1
(1; ω1)

b0

1
← Openpk(c, d0), b1

1
← Openpk(c, d0)

if ⊥ 6= b0

1
6= b1

1
6= ⊥ then Failure

if b0

1
= ⊥ = b1

1
then







Send the Halt command to T.

Choose b2 ←u {0, 1} and rerun the protocol with ω1 and b2.

Return whatever P
∗

1
returns.

if b0

1
= ⊥ then b1 ← b1

0
else b1 ← b0

1

b2 ← b1 ⊕ y

Rerun the protocol with ω1 and b2

if bb2
1

= ⊥ then Send the Halt command to T.

Return whatever P
∗

1
returns.

S
P

∗

2

2
(y, pk)

































ω2 ←u Ω2,

For i = 1, . . . k do
















b1 ←u {0, 1}

(c, d)← Compk(bi)

b2 ← P
∗

2
(pk, c; ω2)

if b1 ⊕ b2 = y then
[

Send d to P
∗

2
and output whatever P2 outputs.

return Failure

Prove following the following statements under the assumption that the
commitment scheme is (k · t, ε1)-hiding and (t, ε2)-binding.

(a) The failure probability of S1 is bounded by ε2 and the failure prob-
ability of S2 is bounded by 2−k + ε1.

(b) Show that if y is chosen uniformly from {0, 1}, then b2 computed by
S1 has a uniform distribution over {0, 1} and is independent of ω1.
Assume that b2 has uniform distribution if S1 fails.

(c) Conclude that the output distributions of SP1

1
and P2 in the ideal

world coincide with the real world outputs when S1 does not fail.

(d) Show that if y is chosen uniformly from {0, 1}, then b1 computed by
S2 has a uniform distribution over {0, 1} and is independent of ω2.
Assume that b1 has uniform distribution if S1 fails.

4



(e) Conclude that the output distributions of P1 and SP2

2
in the ideal

world coincide with the real world outputs when S2 does not fail.

8. Usually, we need many random bits in the computations and thus one
must repeat the Blum coin flipping protocol.

(a) Construct the corresponding simulator S2 if the protocols are exe-
cuted sequentially. The simulator must assure that

b1

1
⊕ b1

2
= y1, . . . , b

ℓ
1
⊕ bℓ

2
= yℓ

for random bits y1, . . . , yℓ generated by the trusted third party T.

(b) Construct the corresponding simulator S2 for P∗

2
if the protocols are

executed in parallel, i.e. P1 sends commitments c1, . . . , cℓ as a single
message. Why do we get an exponential blowup in the running time
of S2. Does a similar inefficiency appear also for S1?

(c) Construct a non-rewinding simulator S2 for the Blum protocol under
the assumption that the commitment scheme is equivocable.

Hint: Use the modified setup procedure (pk, sk) ← Gen∗ to avoid
the need for rewinding.

(d) Show that there exists an efficient simulator S2 for the parallel com-
position of Blum protocols if the commitment scheme is equivocable.
Why could a commitment scheme that is extractable and equivocable
simultaneously improve the situation even further?

5


