MTAT.07.003 Cryptology II Spring 2008 / Homework 8

- 1. Recall that the soundness proof for the Schnorr identification protocol reduced to the task of finding two ones in the same row in a large zero one matrix. Assume that the matrix has m rows and n columns and there are at least ε -fraction of non-zero entries. Establish the following properties of the Rewind algorithm.
 - (a) If the fraction of nonzero entries $\varepsilon \leq \frac{1}{n}$, there exists a matrix configuration such that no algorithm can find two ones in the same row.
 - (b) Let nz(r) denote the number of non-zero entries in the *r*th row. What is the conditional probability that the Rewind algorithm halts with failure in the *r*th row, i.e. the output is (r, c, \overline{c}) and $c = \overline{c}$? What is the corresponding average failure probability Pr [Failure]?
 - (c) Sometimes the knowledge extraction may fail even for $c \neq \overline{c}$. Let $\mathsf{bad}(r, c)$ denote the number of locations \overline{c} that lead to an useless triple (r, c, \overline{c}) . Again, express the failure probability as an averaged conditional probability such that $\Pr[\mathsf{Failure}] \leq \frac{\kappa}{\varepsilon}$, where the knowledge error κ is a solution to combinatorial optimisation problem involving only functions $\mathsf{nz}(\cdot)$ and $\mathsf{bad}(\cdot)$.
 - (*) Give an alternative interpretation to κ such that it can be computed more naturally without considering the optimisation task. Can it be expressed as a maximal fraction of non-zero entries such that there are no triples (r, c, \overline{c}) that can be used for knowledge extraction.
 - (d) Consider the AND-composition of two Schnorr protocols with different secret keys. What triples reveal both secret keys? What is the corresponding knowledge error κ .
- 2. Consider a setting, where an adversary \mathcal{A} must succeed only in one out of d proofs to cause a serious damage. Let us denote the corresponding advantage with respect to a fixed pk by

 $\mathsf{Adv}_{\mathsf{pk}}^{\mathsf{ea}}(\mathcal{A}) = \Pr\left[\mathcal{V}_{\mathsf{pk}} \text{ accepts a protocol instance}\right] ,$

where the instances of Schnorr protocols are executed in parallel. Namely, the prover \mathcal{P}_* sends out $\alpha_1, \ldots, \alpha_d$ and honest verifier \mathcal{V} replies β_1, \ldots, β_d and \mathcal{P}_* completes the interaction with $\gamma_1, \ldots, \gamma_d$.

- (a) Formalise the underlying extraction problem by encoding various end states with values $\{0, 1, \ldots, d\}$. What is the underlying search task in the corresponding matrix?
- (b) Modify the **Rewind** algorithm so that it provides solution to the problem specified above. Estimate the running time.
- (c) Estimate the failure probability of the modified Rewind algorithm. What is the expected number of probes needed to find necessary transcripts for knowledge extraction?

3. Consider a setting, where an adversary \mathcal{A} must succeed only in one out of d proofs to cause a serious damage. Let us denote the corresponding advantage with respect to a fixed pk by

 $\operatorname{\mathsf{Adv}}_{\mathsf{pk}}^{\mathsf{ea}}(\mathcal{A}) = \Pr\left[\mathcal{V}_{\mathsf{pk}} \text{ accepts a protocol instance}\right] ,$

where the instances of Schnorr protocols are executed one by one. As a result, we can rewind the prover \mathcal{P}_* algorithm in *d* places. We can switch each individual challenge β_i to get the revealing transcript.

- (a) Formalise the underlying extraction problem by encoding various end states with values $\{0, 1, \ldots, d\}$. Let $A(r, \beta_1, \ldots, \beta_d)$ be the corresponding array. What is the underlying search task now?
- (b) Modify the **Rewind** algorithm so that it provides solution to the problem specified above. Estimate the running time.
- (c) Estimate the failure probability of the modified Rewind algorithm. What is the expected number of probes needed to find necessary transcripts for knowledge extraction?
- 4. The Guillou-Quisquater identification scheme is directly based on the RSA problem. The identification scheme is a honest verifier zero-knowledge proof that the prover knows x such that $x^e = y \mod n$ where n is an RSA modulus. More precisely, the public information $\mathsf{pk} = (n, e, y)$ and the corresponding secret is x. The protocol is following:
 - 1. \mathcal{P} chooses $r \leftarrow \mathbb{Z}_n^*$ and sends $\alpha \leftarrow r^e$ to \mathcal{V} .
 - 2. \mathcal{V} chooses $\beta \leftarrow \{0,1\}$ and sends it to \mathcal{P} .
 - 3. \mathcal{P} computes $\gamma \leftarrow rx^{\beta}$ and sends it to \mathcal{V} .
 - 4. \mathcal{V} accepts the proof if $\gamma^e = \alpha y^{\beta}$.

Prove the following facts about the Guillou-Quisquater identification scheme.

- (a) The GQ identification scheme is functional.
- (b) The GQ identification scheme has the zero-knowledge property.
- (c) The GQ identification protocol is specially sound.
- (d) Amplify the security by parallel composition. Derive the corresponding knowledge bound.
 Hint: When does the knowledge extraction fail?

Hint: When does the knowledge extraction fail?

- 5. Let \mathbb{G} be a cyclic group with prime number of elements q and let g_1 and g_2 be generators of the group. Now consider a honest verifier zero-knowledge proof that the prover knows x such that $g_1^x = y_1$ and $g_2^x = y_2$. More precisely, the public information $\mathsf{pk} = (g_1, g_2, y_1, y_2)$ and the secret is x. The proof is following:
 - 1. \mathcal{P} chooses $r \leftarrow_u \mathbb{Z}_q$ and sends $\alpha_1 \leftarrow g_1^r$ and $\alpha_2 \leftarrow g_2^r$ to \mathcal{V} .

- 2. \mathcal{V} chooses $\beta \leftarrow \mathbb{Z}_q$ and sends it to \mathcal{P} .
- 3. \mathcal{P} computes $\gamma \leftarrow x\beta + r$ and sends it to the verifier \mathcal{V} .
- 4. \mathcal{V} accepts the proof if $g_1^{\gamma} = \alpha_1 y_1^{\beta}$ and $g_2^{\gamma} = \alpha_2 y_2^{\beta}$.

Prove the following facts about the sigma protocol.

- (a) The protocol is functional and has the zero-knowledge property.
- (b) The protocol is specially sound and two colliding transcripts indeed reveal x such that $g_1^x = y_1$ and $g_2^x = y_2$.
- (c) Construct a honest verifier zero knowledge proof that the ElGamal encryption $(c_1, c_2) = \mathsf{Enc}_{\mathsf{pk}}(1)$.
- (*) Let G be a cyclic group with prime number of elements q as in the previous exercise. Design a honest verifier zero-knowledge proof that the prover knows x_1 and x_2 such that $y = g_1^{x_1} g_2^{x_2}$. The latter is often used together with the lifted ElGamal encryption $\overline{\mathsf{Enc}}_{\mathsf{pk}}(x) = \mathsf{Enc}(g^x)$ that is additively homomorphic. Construct honest verifier zero-knowledge proofs for the following statements.
 - (a) An encryption c is $\overline{\mathsf{Enc}}_{\mathsf{pk}}(m)$ and m is known or publicly fixed.
 - (b) An encryption c_2 is computed as $c \cdot \mathsf{Enc}_{\mathsf{pk}}(1)$.
 - (c) An encryption c_2 is computed as $c_1^y \cdot \mathsf{Enc}_{\mathsf{pk}}(1)$.
 - (d) An encryption c_3 is computed as $c_1 \cdot c_2 \cdot \mathsf{Enc}_{\mathsf{pk}}(1)$.
- 6. Normally, one uses the entire message space \mathcal{M} in the coin flipping protocol. That is, parties first choose $b_1, b_2 \leftarrow \{0, 1\}^{\ell} \subseteq \mathcal{M}$. Next, \mathcal{P}_1 computes $(c, d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(b_1)$ and sends c to \mathcal{P}_2 , who replies b_2 . Finally, \mathcal{P}_1 releases dand both parties compute $b_1 \oplus b_2$. Obviously, a malicious \mathcal{P}_1^* may give different decommitment values for different replies b_2 . Under the assumption that the commitment scheme is (t, ε) -binding prove the following facts.
 - (a) No $\frac{t}{2}$ -time adversary \mathcal{P}_1^* can achieve $\Pr[b_1 \oplus b_2 = 0] \ge 2^{-\ell} + \sqrt{\varepsilon}$. **Hint:** Consider a simple strategy, where you provide $b_2^0, b_2^1 \leftarrow \{0, 1\}^{\ell}$ to extract a double opening.
 - (b) Show that for fixed target value $y = b_1 \oplus b_2$ we can encode the search for a double opening as a matrix game. What is the difference between the standard knowledge extraction and this setting? Does it affect possible security guarantees?
 - (c) What happens with the success probability if one rewinds the adversary k times? What do you think which strategy is better: blind rewinding with fixed random coins or the Rewind algorithm?
 - (d) Let A be an efficiently detectable subset of $\{0,1\}^{\ell}$. Show that no $\frac{t}{2}$ -time adversary \mathcal{P}_1^* can achieve

$$\Pr\left[b_1 \oplus b_2 = 0\right] \ge \Pr\left[x \leftarrow \{0,1\}^{\ell} : x \in A\right] + \sqrt{\varepsilon} .$$