
MTAT.07.003 Cryptology II
Spring 2008 / Homework 8

1. Recall that the soundness proof for the Schnorr identification protocol
reduced to the task of finding two ones in the same row in a large zero one
matrix. Assume that the matrix has m rows and n columns and there are
at least ε-fraction of non-zero entries. Establish the following properties
of the Rewind algorithm.

(a) If the fraction of nonzero entries ε ≤ 1

n
, there exists a matrix config-

uration such that no algorithm can find two ones in the same row.

(b) Let nz(r) denote the number of non-zero entries in the rth row. What
is the conditional probability that the Rewind algorithm halts with
failure in the rth row, i.e. the output is (r, c, c) and c = c? What is
the corresponding average failure probability Pr [Failure]?

(c) Sometimes the knowledge extraction may fail even for c 6= c. Let
bad(r, c) denote the number of locations c that lead to an useless triple
(r, c, c). Again, express the failure probability as an averaged con-
ditional probability such that Pr [Failure] ≤ κ

ε
, where the knowledge

error κ is a solution to combinatorial optimisation problem involving
only functions nz(·) and bad(·).

(⋆) Give an alternative interpretation to κ such that it can be computed
more naturally without considering the optimisation task. Can it be
expressed as a maximal fraction of non-zero entries such that there
are no triples (r, c, c) that can be used for knowledge extraction.

(d) Consider the AND-composition of two Schnorr protocols with differ-
ent secret keys. What triples reveal both secret keys? What is the
corresponding knowledge error κ.

2. Consider a setting, where an adversary A must succeed only in one out
of d proofs to cause a serious damage. Let us denote the corresponding
advantage with respect to a fixed pk by

Advea
pk(A) = Pr [Vpk accepts a protocol instance] ,

where the instances of Schnorr protocols are executed in parallel. Namely,
the prover P∗ sends out α1, . . . , αd and honest verifier V replies β1, . . . , βd

and P∗ completes the interaction with γ1, . . . , γd.

(a) Formalise the underlying extraction problem by encoding various end
states with values {0, 1, . . . , d}. What is the underlying search task
in the corresponding matrix?

(b) Modify the Rewind algorithm so that it provides solution to the prob-
lem specified above. Estimate the running time.

(c) Estimate the failure probability of the modified Rewind algorithm.
What is the expected number of probes needed to find necessary
transcripts for knowledge extraction?
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3. Consider a setting, where an adversary A must succeed only in one out
of d proofs to cause a serious damage. Let us denote the corresponding
advantage with respect to a fixed pk by

Advea
pk(A) = Pr [Vpk accepts a protocol instance] ,

where the instances of Schnorr protocols are executed one by one. As a
result, we can rewind the prover P∗ algorithm in d places. We can switch
each individual challenge βi to get the revealing transcript.

(a) Formalise the underlying extraction problem by encoding various end
states with values {0, 1, . . . , d}. Let A(r, β1, . . . , βd) be the corre-
sponding array. What is the underlying search task now?

(b) Modify the Rewind algorithm so that it provides solution to the prob-
lem specified above. Estimate the running time.

(c) Estimate the failure probability of the modified Rewind algorithm.
What is the expected number of probes needed to find necessary
transcripts for knowledge extraction?

4. The Guillou-Quisquater identification scheme is directly based on the RSA
problem. The identification scheme is a honest verifier zero-knowledge
proof that the prover knows x such that xe = y mod n where n is an
RSA modulus. More precisely, the public information pk = (n, e, y) and
the corresponding secret is x. The protocol is following:

1. P chooses r←
u

Z∗

n and sends α← re to V.

2. V chooses β ←
u
{0, 1} and sends it to P.

3. P computes γ ← rxβ and sends it to V.

4. V accepts the proof if γe = αyβ .

Prove the following facts about the Guillou-Quisquater identification scheme.

(a) The GQ identification scheme is functional.

(b) The GQ identification scheme has the zero-knowledge property.

(c) The GQ identification protocol is specially sound.

(d) Amplify the security by parallel composition. Derive the correspond-
ing knowledge bound.
Hint: When does the knowledge extraction fail?

5. Let G be a cyclic group with prime number of elements q and let g1 and g2

be generators of the group. Now consider a honest verifier zero-knowledge
proof that the prover knows x such that gx

1
= y1 and gx

2
= y2. More

precisely, the public information pk = (g1, g2, y1, y2) and the secret is x.
The proof is following:

1. P chooses r←
u

Zq and sends α1 ← gr
1

and α2 ← gr
2

to V.
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2. V chooses β ←
u

Zq and sends it to P.

3. P computes γ ← xβ + r and sends it to the verifier V.

4. V accepts the proof if g
γ
1

= α1y
β
1

and g
γ
2

= α2y
β
2
.

Prove the following facts about the sigma protocol.

(a) The protocol is functional and has the zero-knowledge property.

(b) The protocol is specially sound and two colliding transcripts indeed
reveal x such that gx

1
= y1 and gx

2
= y2.

(c) Construct a honest verifier zero knowledge proof that the ElGamal
encryption (c1, c2) = Encpk(1).

(⋆) Let G be a cyclic group with prime number of elements q as in the previous
exercise. Design a honest verifier zero-knowledge proof that the prover
knows x1 and x2 such that y = gx1

1
gx2

2
. The latter is often used together

with the lifted ElGamal encryption Encpk(x) = Enc(gx) that is additively
homomorphic. Construct honest verifier zero-knowledge proofs for the
following statements.

(a) An encryption c is Encpk(m) and m is known or publicly fixed.

(b) An encryption c2 is computed as c · Encpk(1).

(c) An encryption c2 is computed as c
y
1
· Encpk(1).

(d) An encryption c3 is computed as c1 · c2 · Encpk(1).

6. Normally, one uses the entire message spaceM in the coin flipping proto-
col. That is, parties first choose b1, b2 ←u {0, 1}ℓ ⊆M. Next, P1 computes
(c, d)← Compk(b1) and sends c to P2, who replies b2. Finally, P1 releases d

and both parties compute b1⊕ b2. Obviously, a malicious P∗

1
may give dif-

ferent decommitment values for different replies b2. Under the assumption
that the commitment scheme is (t, ε)-binding prove the following facts.

(a) No t
2
-time adversary P∗

1
can achieve Pr [b1 ⊕ b2 = 0] ≥ 2−ℓ +

√
ε.

Hint: Consider a simple strategy, where you provide b0

2
, b1

2
← {0, 1}ℓ

to extract a double opening.

(b) Show that for fixed target value y = b1 ⊕ b2 we can encode the
search for a double opening as a matrix game. What is the difference
between the standard knowledge extraction and this setting? Does
it affect possible security guarantees?

(c) What happens with the success probability if one rewinds the ad-
versary k times? What do you think which strategy is better: blind
rewinding with fixed random coins or the Rewind algorithm?

(d) Let A be an efficiently detectable subset of {0, 1}ℓ. Show that no
t
2
-time adversary P∗

1
can achieve

Pr [b1 ⊕ b2 = 0] ≥ Pr
[

x←
u
{0, 1}ℓ : x ∈ A

]

+
√

ε .
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