
MTAT.07.003 Cryptology II
Spring 2008 / Homework 9

1. Any instantiation of the full domain hash signature scheme defines implic-
itly a bundle H ⋊⋉ Ftp of function families H and Ftp. Namely, the signa-
ture scheme is determined by a tuple of algorithms (Gen, Map, Inv, Hash),
where (Gen, Map, Inv) determines the collection of trapdoor permutations
Ftp and functions Invsk :Mpk → S and Hashpk :M→ Tpk have matching
input and output domains Tpk ⊆Mpk for every (pk, sk)← Gen. The corre-
sponding bundle H ⋊⋉ Ftp of function families H and Ftp is (t, ε)-claw-free
if for any t-time adversary A the following advantage

Advc-free
Ftp⋊⋉H(A) = Pr

[

GA = 1
]

≤ ε

where

GA







(pk, sk)← Gen

(m, s)← A(pk)

return [Hashpk(m)
?
= Mappk(s)]

Prove the following facts about the full domain hash signature scheme.

(a) The signature scheme is (t, ε)-secure against existential forgeries in
the model, where the adversary cannot access the signing oracle, if
the bundle H ⋊⋉ Ftp is (t, ε)-claw-free.

(b) The bundle H ⋊⋉ Ftp can be (t, ε)-claw-free only if Ftp is (t, ε)-secure
collection of trapdoor permutations and H is (t, ε)-collision resistant.

(c) Generalise the notion of claw-free bundles so that (t, ε)-security is
sufficient for the standard attack model.

(d) Assume that the hash function family H is strongly ε1-regular, i.e.,
for every key pair (pk, sk) ← Gen and the output distribution of
Hashpk(m) where m ←

u
M and uniform distribution over Mpk are

ε1-close. Now consider the security against universal forgeries

Adv
u-forge
H⋊⋉Ftp

(A) = Pr
[

GA = 1
]

where

GA











(pk, sk)← Gen

m←
u
M

s← A(m, pk)

return Verpk(m, s)

and prove that (t, ε)-security of trapdoor collection Ftp is sufficient
for security. Generalise the notion of one-wayness so that it is also
sufficient against chosen message attacks.
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2. Consider a following secure message transmission protocol. A sender P1

knows the public encryption key pk2 of a receiver P2 and the receiver P2

knows the public signing key pk1 of the sender P1. To encrypt a message
m the sender sk computes c← Encpk2

(m), s← Signsk1
(c) and sends (c, s)

over unreliable channel to P2. The receiver P2 first checks the authenticity
by computing Verpk1

(c, s) and then decrypts the message m← Decsk2
(c).

(a) What are properties of the encryption and the signing scheme are
needed to guarantee secure message transmission? Compute the cor-
responding security guarantees.

(b) Show that the message transmission protocol may become insecure
if P1 uses the signing key sk1 also for some other purposes. Give an
explicit attack description under the assumption that the secret key
sk2 can be extracted using chosen message attacks.

(c) Conclude that the message transmission protocol can become inse-
cure if P2 uses sk2 to decrypt messages of several senders.

(d) Interpret the results. In which contexts, the this message transmis-
sion protocol is useful? When is the traditional construction based
on symmetric encryption and authentication primitives better?

(⋆) Give a construction of secure message transmission protocol that is
still based on signing and asymmetric encryption primitives but is
significantly more secure against malicious behaviour.

3. Construct an identification scheme that is based on a signature scheme.
Prove that the corresponding identification scheme is secure in the most
powerful setting, where the adversary can run several identification pro-
tocols concurrently in order to impersonate true signer.

4. Sometimes signature schemes are used to prove liveness of a device or
a person. For instance, ATM machines normally ask PIN codes several
times during long transactions to assure that the person is still present.
One possibility too implement such an entity authentication procedure is
through the use of one-time signatures. Let g be (t, ε1)-secure one-way
function then the simplified Merkle signature scheme works as follows.

• Let 2k be the maximal number of one-time signatures. Then a secret
key sk is a tuple of random values s0...0, . . . s1...1 ←u M and the cor-
responding public key is a tuple of hash values g(s0...0), . . . , g(s1...1).

• Each nonce ri is a one-time signature that proves liveness. A signer
releases nonces s0...0, . . . , s1...1 one by one.

• The ℓth one-time signature sℓ is correct if g(sℓ) is present in pk.

Large size of a public and private keys is the main drawback of simplified
Merkle signature scheme. Hence, the original Merkle signature scheme
utilises the several enhancements.
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(a) Show that we can use a (t, ε2)-collision resistant hash function family
to compact the public key. Describe the corresponding compaction
procedure and the resulting signatures. Prove the security of signa-
ture scheme in the standard model with restriction that each signa-
ture can be used only once.

Hint: Binary trees provide an optimal hashing scheme.

(b) Show that we can use (t, ε3)-pseudorandom function family F to
compact also the private key sk. Describe the corresponding scheme
and recompute the security guarantees.

Hint: How to stretch randomness in a most optimal way?

(c) Show also that the full Merkle signature scheme can be used to sign
up to k-bit messages. Describe the corresponding signature scheme
and provide corresponding security guarantees.

(⋆) Note that one-wayness and indistinguishability under chosen message at-
tack are equivalent notions if the message space is {0, 1}. To be pre-
cise, OW-CPA security makes sense for a small message space only if
Mappk : M → S is a randomised transformation and the corresponding
security game is defined as follows

GA

















pk← Gen

m0 ←u M

y ← Mappk(m0)

m1 ← A(pk, y)

return [∃r : Mappk(m1; r) = y]

Evidently, IND-CPA security implies OW-CPA security for all sizes of
message spacesM. Provide a sharp upper and lower bound for the oppo-
site reduction OW-CPA⇒ IND-CPA. Does this result also hold for chosen
ciphertext attacks? When are one-wayness and indistinguishability qual-
itatively equivalent? Can we avoid the decrease in success probability by
the increase of running time?

5. Construct a generic two-party signature signature from the Schnorr iden-
tification protocol. More precisely, follow the steps described below.

(a) Construct an OR identification scheme where a prover can convince
an honest verifier that he or she knows either discrete logarithm of
y1 or y2. Compute the corresponding soundness guarantees.

Reminder: A protocol is sound if the prover must knows the fixed
secret key to pass the verification.

(b) Use Fiat-Shamir transformation to create the corresponding generic
signature. What are the corresponding soundness guarantees in the
random oracle model?
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(c) Show that the corresponding two-party signature allows to implement
non-transferable proofs. Namely, assume that P1 knows the secret
key sk1 and P2 knows the secret key sk2. Then P2 cannot convince
any outsider that P1 signed a document, as P2 could have signed the
document him- or herself. Where could such a primitive be useful?

6. Construct a forward-secure signature scheme from the Fiat-Shamir iden-
tification scheme. More precisely, follow the steps given below.

(a) Decrease the knowledge error of the Fiat-Shamir identification scheme
by parallel repetition of ℓ protocols. Compute the corresponding
soundness guarantees.

(b) Use Fiat-Shamir transformation to create the corresponding generic
signature. What are the corresponding soundness guarantees in the
random oracle model?

(c) Use a randomly chosen element s ∈ Z
∗
n

to create a sequence of secret
keys. Describe how a signer can start to use a new secret key when
he or she thinks that the old key is compromised.

(⋆) Prove that security of a signature scheme can be never proved through
a reduction that shows how to extract secret key from an adversary who
is successful in deception. More precisely, show that if such a reduction
exists then there exists also an attack strategy that extracts a secret key
using few signing queries. Why this impossibility result does not conflict
with the security proofs in the random oracle model?
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