
Fairness in two-party random sampling

Margus Niitsoo

May 12, 2008

Abstract

This report generalizes the results given by Cleve (1986) that bound the
fairness achievable in a multyparty coin tossing protocol. By using essentially
the same proof, we show similar bounds for a biased coin and then extend
the result to sampling from an arbitrary distribution. We also show bounds
for two-party computation of a function but do so only in the average case.

1 Introduction

Suppose Alice and Bob want to toss a fair coin and agree on what the out-
come was. Suppose further that Alice and Bob live on different continents
and cannot meet face to face to do so. They therefore have to agree on the
value over the internet. However, neither of them particularily trusts the
other and fears that the other might cheat given the opportunity. This is
the problem of tossing a coin over the telephone. Using bit commitment fair
protocols can be constructed. However, all of them are fair only if both par-
ties follow the protocol all the way to the result without halting. However,
this might not always be the case and in the case where one party halts, the
coinflip can in fact be biased.

Cleve [1] showed that at least one of the parties can bias the coin rather
significantly and this result can be weakened only by increasing the number
of rounds of communication. We generalize his result to the case of any dis-
tribution and to give the proof in more modern terms.

1

2 The ideal model

Suppose we have a protocol for two parties Alice and Bob that should result
in both of them agreeing on a value chosen from some distribution D if both
of them are honest. Essentially, we want our protocol to guarantee that after
both parties have agreed to start the protocol, the exchange of messages will
always lead to both parties returning the same value that is sampled from
the required distribution D. If we have a trusted third party we can use the
model presented on Figure 1.

A

hello

B

d

d← D

d

hello

Figure 1: The ideal-world functionality

The protocol consists of the two parties, A and B interested in sampling
a value and a third party trusted by both of them. A and B both send a
greeting message to the third party informing that they want to begin a pro-
tocol. The third party then samples from the desired distribution and sends
the value back to both A and B. The only malicious behaviour allowed for
both parties is not to partake in the protocol (by not sending the first hello)
and in this case neither gets the output value d. Thus either neither of them
or both of them get the d.

3 The real world

However, we know that in reality a trusted and objective third party is nearly
impossible to find. Quoting a passage from a Chinese philosopher Zhuangzi:

Whom shall I ask as arbiter between us? If I ask someone who
takes your view, he will side with you. How can such a one
arbitrate between us? If I ask someone who takes my view, he
will side with me. How can such a one arbitrate between us?
If I ask someone who differs from both of us, he will be equally
unable to decide between us, since he differs from both of us. And
if I ask someone who agrees with both of us, he will be equally
unable to decide between us, since he agrees with both of us.

2

Therefore, we want Alice and Bob to be able to agree on the value chosen
without any outside help. To do that, we assume that they exchange mes-
sages such that first Alice sends one to Bob, then Bob sends one back and
so on. The protocol structure is depicted on Figure 2.
Essentially, the protocol consists of r rounds. Each round begins with A

A B

Figure 2: The real-world functionality

sending a message to B and ends with B sending a message back to A. Thus,
a total of r messages are sent in both direction during the whole protocol.
We assume that both A and B are allowed to do computations between re-
cieving a message sent to them and sending one back again. In the end of
the protocol both of them are expected to output a value – the sample from
D they thought they agreed on. We want that value to be the same for both
parties if the protocol was followed.

4 Problem statement

We are interested in how closely we can approximate the ideal world func-
tionality with the model we have in the real world. For that we use the notion
of relative resilience introduced by Beaver [2] and extended by Goldreich [3].
To prove that the real world model can emulate the functionality of the ideal
world model, we have to be able to simulate the ideal world behaviour of the
trusted third party given the real world behaviour of A and B. However,
unlike in the standard problem statement, we are interested in showing that
this simulation cannot be too good or that there is a lower bound on the
simulation of the ideal world model with any real world model of the type
described above.

3

5 Bounds on fairness

The original proof of Cleve was about protocols tossing a fair coin. He
assumed that both parties do not always get the same result in the end even
if the protocol is properly followed. We also introduce the probability q of
the parties agreeing on the answer if the protocol is followed without halting.
The theorem as applied to the unfair cointoss protocol can thus be stated as
follows:

Theorem 1. Let π be a biased cointoss protocol with r rounds for two parties

where the coin lands 1 with probability p ≥ 0.5. Assume that the protocol

terminates with both parties agreeing on the same value with probability q.

Then there always exists a real world adversary that can bias the result by at

least q−p

4r+1
.

Proof. Assume that the protocol π is between parties A and B and that the
messages exchanged within the protocol are all bitstrings. In reality each
party has the possibility to quit at each round – he can just stop sending out
the messages required. We can model this behaviour as sending out ⊥ values
instead of reasonable messages. If one of the parties quits at round i then
the other party still has to produce some kind of an output which we call the
default output. Let ai be the default output of A if B quits at round i and let
ar+1 denote the output if the protocol is followed to the end. Similarly, let bi

be the output of B if A quits in the round i + 1 and let br denote the output
in the case that protocol is followed to the end (see Figure 3). The idea of
the proof is to construct a number of different adversaries and to prove that
at least one of them will bias the selection process quite considerably.

There are five types of adversaries. Their algorithms are given on Figure
4. In total we therefore have 4r + 1 different adversaries. Essentially all
of them play the honest party for a set number of rounds and then quit
at a certain round, usually depending on what the output would be if the
adversary would quit instead.

We now try to estimate how much these adversaries influence the com-
putations of the other party which is assumed to remain honest.

We say that an adversary biases the output of the honest party by ǫ

towards either 0 or 1 if the probability of the honest party outputing that
value while playing with that adversary is at least ǫ more than it should be
according to the ideal biased cointoss being performed.

We now see how much each of the adversaries biases the output. The
simplest case is A0

0 for which the output is always b0 since A0
0 quits at round

4

B Round

1

2

a1

b1

b0

a2

b2

r

A

............

ar+1

ar

br

Figure 3: Schematic for default outputs

1. The bias towards 1 is therefore

Pr[b0 = 1]− p

since the cointoss protocol should return 1 with probability p but in the case
of this adversary it returns b0. Analogously the bias towards 0 is

Pr[b0 = 0]− (1− p) = p− Pr[b0 = 1].

We can choose the larger of the two to get |Pr[b0 = 0]− p|.

For A0
i , consider the bias towards the answer 0. In the ideal protocol the

output should be 0 with probability 1 − p. In the case of this adversary,
however, there are two possibilities. If ai = 0 then A0

i quits at round i + 1
so the output of the protocol for honest B is bi. Otherwise (when ai = 1)
A0

i quits at round i so B returns bi−1. Therefore, B returns 0 precisely when
either ai = 0 and bi = 0 or ai = 1 and bi−1 = 0. The bias is therefore

Pr[ai = 0 ∧ bi = 0] + Pr[ai = 1 ∧ bi−1 = 0]− (1− p).

The total bias which is the maximum of biases towards both 0 and 1, is
therefore at least this big.

5

Analogously, the adversary A1
i biases the output of B by at least

Pr[ai = 1 ∧ bi = 1] + Pr[ai = 0 ∧ bi−1 = 1]− p.

For the adversaries controlling B the biases they cause are similarly at
least

Pr[bi = 0 ∧ ai+1 = 0] + Pr[bi = 1 ∧ ai = 0]− (1− p)

for B0
i and at least

Pr[bi = 1 ∧ ai+1 = 1] + Pr[bi = 0 ∧ ai = 1]− p

for B1
i .

6

Then the average of all the biases ∆ can be bounded from below by

∆ ≥
1

4r + 1

[

|Pr[b0 = 1]− p|+

+
r

∑

i=1

(

Pr[ai = 0 ∧ bi = 0] + Pr[ai = 1 ∧ bi−1 = 0]− (1− p) +

+ Pr[ai = 1 ∧ bi = 1] + Pr[ai = 0 ∧ bi−1 = 1]− p +

+ Pr[bi = 0 ∧ ai+1 = 0] + Pr[bi = 1 ∧ ai = 0]− (1− p) +

+ Pr[bi = 1 ∧ ai+1 = 1] + Pr[bi = 0 ∧ ai = 1]− p
)]

=

=
1

4r + 1

[

|Pr[b0 = 1]− p| − 2r +

+
r

∑

i=1

(

Pr[ai = 0 ∧ bi = 0] + Pr[ai = 1 ∧ bi−1 = 0] +

+ Pr[ai = 1 ∧ bi = 1] + Pr[ai = 0 ∧ bi−1 = 1] +

+ Pr[bi = 0 ∧ ai+1 = 0] + Pr[bi = 1 ∧ ai = 0] +

+ Pr[bi = 1 ∧ ai+1 = 1] + Pr[bi = 0 ∧ ai = 1]
)]

=

=
1

4r + 1

[

|Pr[b0 = 1]− p| − r +

+
r

∑

i=1

(

Pr[ai = 1 ∧ bi−1 = 0] + Pr[ai = 0 ∧ bi−1 = 1] +

+ Pr[bi = 0 ∧ ai+1 = 0] + Pr[bi = 1 ∧ ai+1 = 1]
)]

=

=
1

4r + 1

[

|Pr[b0 = 1]− p| − r + Pr[a1 = 1 ∧ b0 = 0] + Pr[a1 = 0 ∧ b0 = 1] +

+ Pr[br = 0 ∧ ar+1 = 0] + Pr[br = 1 ∧ ar+1 = 1] +

+
r−1
∑

i=1

(

Pr[ai+1 = 1 ∧ bi = 0] + Pr[ai+1 = 0 ∧ bi = 1] +

+ Pr[bi = 0 ∧ ai+1 = 0] + Pr[bi = 1 ∧ ai+1 = 1]
)]

=

=
1

4r + 1

[

|Pr[b0 = 1]− p| − 1 + Pr[a1 = 1 ∧ b0 = 0] + Pr[a1 = 0 ∧ b0 = 1] +

+ Pr[br = 0 ∧ ar+1 = 0] + Pr[br = 1 ∧ ar+1 = 1]
]

.

We telescoped the sum by noting that −p− (1− p) = −1 and

Pr[ai = 1 ∧ bi = 1] + Pr[ai = 0 ∧ bi = 1]+

+ Pr[ai = 1 ∧ bi = 0] + Pr[ai = 0 ∧ bi = 0] = 1

7

After also seeing that

|Pr[b0 = 1]− p| = max{Pr[b0 = 1]− p, p− Pr[b0 = 1]} =

= max{Pr[b0 = 1]− p,−(1− Pr[b0 = 0]) + p)} =

= max{Pr[b0 = 1]− p, Pr[b0 = 0]− (1− p))} ≥

≥ max{Pr[b0 = 1], Pr[b0 = 0]} − p

(because p ≥ 1− p since p ≥ 0.5) and that

Pr[a1 = 1 ∧ b0 = 0] + Pr[a1 = 0 ∧ b0 = 1] =

= 1− (Pr[a1 = 1] Pr[b0 = 1] + Pr[a1 = 0] Pr[b0 = 0]) ≥

≥ 1−max{Pr[b0 = 1], Pr[b0 = 0]},

(because maximum is always larger than the weighed average) we can simplify
the inequality even further to get

∆ ≥
1

4r + 1

[

Pr[br = 0 ∧ ar+1 = 0] + Pr[br = 1 ∧ ar+1 = 1]− p
]

. Because we assumed that if the protocol is followed until the end then the
outputs of two parties agree with a probability at least q, we finally have
that

∆ ≥
q − p

4r + 1
.

Since ∆ is the average of the biases, at least one of the 4r + 1 adversaries
has to do be able to achieve a bias that is at least this good.

6 Distance between the real and ideal world

models

After a little consideration it should be clear that the theorem is actually
about the real and ideal world differences and that q−p

4r+1
is clearly a lower

bound on the closeness of the real and ideal models for the two party coin
tossing protocols. However, this bound can easily be neglected by choosing
q to be equal to p. This would mean that the protocol only gives the same
result on both processors with the probability of only q. This is a stark
contrast to the ideal world where the two parties always recieve the same
element sampled from D and this difference between models allows us to
obtain the following bound on the difference between the two models

Corollary 2. The statistical difference between the real and ideal world mod-

els for two party cointoss protocols is bounded from below by max{1−q, q−p

4r−1
}.

8

Proof. Let π be any protocol for two-party unfair cointoss. Then even if both
parties follow the protocol, its functionality differs from the intended ideal
world by at least 1 − q because in these cases the two parties do not agree
on the same output. We also know from the previous theorem that there
exists an adversary that can bias the coin by at least q−p

4r−1
. Therefore the

statistical difference between real and ideal worlds is at least the maximum
of the two.

7 Sampling from an arbitrary distribution

The previous result can be generalized to the case of sampling from an ar-
bitrary distribution D. The trick is to note that we can use a two party
protocol that samples from D to emulate a biased cointoss.

This can be done by choosing a subset H of suppD and then coding the
outputs of the protocol as either 0 or 1 based on wether x ∈ H or not. If
the probability that x← D belongs to H is p then this protocol amounts to
tossing a biased coin with the probability p of getting a 1. As we know that
such protocols can be biased and have to be at least max{1−q, q−p

4r−1
} distant

from the ideal world, so are all the protocols sampling from D.

In this case, however, there is usually more than one choice for H . We
are interested in the one that gives the best bounds. For that we choose as
H the subset for which the probability of x← D such that x ∈ H is as close
to one half as possible and denote this probability as p. Since both H and
its complement H̄ are equally close, we assume that H is the one for which
p ≥ 0.5 as the theorem in the previous section is stated for such p. Formally,
all this can be written out as

p := min
H⊂suppD

{Pr[x = 1H] ≥ 0.5}.

It is easy to see that this maximizes the bound in the theorem and thus also
in the ideal-real world difference result. We can formalize the result in the
following way:

Corollary 3. Let π be a two-party protocol for sampling from a finite distri-

bution D. Then difference between the output of π and the ideal world model

is at least max{1−q, q−p

4r−1
} where p is as defined above and q is the probability

of outputs of two fair parties agreeing.

9

8 Two party computation of a function

The result can be generalized to the case of two-party computations of func-
tions if we know the expected input distribution of the parties. Let π be a
protocol intended for two-party computation of a function f(a, b) where the
first party A knows a and the second party B knows b. Assume that the
inputs of A are from a distribution DA and inputs of B from DB and let D
be the distribution of the outputs of f(a, b) if a← DA and b← DB.

Assume that the inputs for protocol π are chosen from the said distribu-
tions. We can then view the protocol as one with no inputs that samples
from the distribution D. We know from before that in this case there exists
an adversary that can bias the output by q−p

4r−1
. This essentially means that

if we know the input distributions of both parties, we can guarantee that a
bias of at least that size will occur on average.

We note that there are some cases where a bias can be proven to exist
regardless of the distributions – for instance, two party computation of XOR
function can be reduced to tossing a fair coin. However, there seem to be no
immediate and general ways of proving that bias always exists based on the
theorem presented in this paper. We therefore leave it as an open problem.

9 Conclusion

We have showed that there exists a bound on fairness of two-party protocols
intended for tossing a biased coin and then generalized that result to the
case for sampling from any distribution. We also explored the possibility
of extending the result to cover two-party computation of a deterministic
function, and although on average the same bound still holds, we leave the
existance of bounds in the general case as an open problem.

References

[1] Cleve, R. Limits on the Security of Coin Flips When Half the Processors
are Faulty. In Proceedings of the eighteenth annual ACM symposium on

Theory of computing, pp. 364-369, 1986

10

[2] Beaver, D. Secure multiparty protocols and zero-knowledge proof sys-
tems tolerating a faulty minority. In Journal of Computing, Vol 4, pp.
75-122, 1991

[3] Goldreich, O. The Foundations of Cryptography, Vol 2, ISBN 0-521-
83084-2, 2004

11

Algorithm 1: A0
0

quit at round 1

Algorithm 2: A0
i

Follow the protocol A for rounds 1, 2, . . . , i− 1
Compute ai

if ai = 0 then follow the protocol for one more round and quit at
round i + 1.
otherwise quit at round i.

Algorithm 3: A1
i

Follow the protocol A for rounds 1, 2, . . . , i− 1
Compute ai

if ai = 1 then follow the protocol for one more round and quit at
round i + 1.
otherwise quit at round i.

Algorithm 4: B0
i

Follow the protocol B for rounds 1, 2, . . . , i− 1
Compute bi

if bi = 0 then follow the protocol for one more round and quit at round
i + 1.
otherwise quit at round i.

Algorithm 5: B1
i

Follow the protocol B for rounds 1, 2, . . . , i− 1
Compute bi

if bi = 1 then follow the protocol for one more round and quit at round
i + 1.
otherwise quit at round i.

Figure 4: Algorithms of adversaries

12

