MTAT.07.003 Cryptology II Spring 2009 / Homework 1

- 1. Show that there exists an efficient many-one reductions between VERTEX-COVER and SETCOVER problems. Estimate the corresponding efficiency guarantees. Formal definitions of both problems are following.
 - VERTEXCOVER PROBLEM. Given a graph, find a minimal set of vertices W that covers all edges, i.e., at least one endpoint of every edge belongs to W.
 - SETCOVER PROBLEM. Given a universe of sets $\mathcal{U} = \{S_1, \ldots, S_n\}$, find a minimal set of sets $\mathcal{C} \subseteq \mathcal{U}$ that \mathcal{C} contains all elements of \mathcal{U} , i.e., for any element $u \in \bigcup_{i=1}^n S_i$ there exists $S_i \in \mathcal{C}$ that contains u.

Hint: How to encode Boolean variables and NAND gates?

- 2. Describe a natural but inefficient black-box reduction between HAMIL-TONIANCYCLE and TRAVELLINGSALESMAN problem. Establish the bounds on reduction efficiency. Formal definitions of both problems are following.
 - HAMILTONIANCYCLE PROBLEM. Given a graph, output 1 iff the graph contains a cycle that goes though each vertex exactly once.
 - TRAVELLINGSALESMAN PROBLEM. Given a graph with weighted edges, find and Hamiltonian cycle with the smallest summary weight.

Hint: How can you enumerate all Hamiltonian cycles?

- (*) Provide an efficient black-box reduction or show that no such blackbox reductions can exist.
- 3. Let \mathbb{G} be a finite group such that all elements $y \in \mathbb{G}$ can be expressed as powers of $g \in \mathbb{G}$. Then the discrete logarithm problem is following. Given $y \in \mathbb{G}$, find a smallest integer x such that $g^x = y$ in finite group \mathbb{G} . Discrete logarithm problem is known to be hard in general, i.e., all universal algorithms for computing logarithm run in time $\Omega(\sqrt{|\mathbb{G}|})$.
 - (a) Show that for a fixed group \mathbb{G} , there exists a Turing machine that finds the discrete logarithm for every $y \in \mathbb{G}$ in $O(\log_2 |\mathbb{G}|)$ steps.
 - (b) Show that for a fixed group G, there exists an analogous Random Access Machine that achieves the same efficiency.
 - (c) Generalise the previous construction and show that for every fixed function $f : \{0,1\}^n \to \{0,1\}^m$ there exists a Turing machine and a Random Access Machine such that they compute f(x) for every input $x \in \{0,1\}^n$ in O(n+m) steps.
 - (d) Are these constructions also valid in practise? Explain why these inconsistencies disappear when we formalise algorithms through universal computing devices.

Hint: What is the time-complexity of binary search algorithms?

- 4. Let \mathbb{G} be a finite group such that all elements $y \in \mathbb{G}$ can be expressed as powers of $g \in \mathbb{G}$. Then the computational Diffie-Hellman (CDH) problem is following. Given $x = g^a$ and $y = g^b$, find a group element $z = g^{ab}$.
 - (a) Show that computational Diffie-Hellman problem is random self-reducible, i.e., for any algorithm B that achieves advantage

$$\mathsf{Adv}^{\mathsf{cdh}}_{\mathbb{G}}(\mathcal{B}) \doteq \Pr\left[x, y \leftarrow \mathcal{G} : \mathcal{B}(x, y) = g^{\log_g x \log_g y}\right]$$

there exists an oracle algorithm $\mathcal{A}^{\mathcal{B}}$ that for any input $x, y \in \mathbb{G}$ outputs the correct answer with the probability $\mathsf{Adv}^{\mathsf{cdh}}_{\mathbb{G}}(\mathcal{B})$ and has roughly the same running time.

(b) Given that the CDH problem is random self-reducible, show that the difficulty of CDH instances cannot wary a lot. Namely, let \mathcal{B} be a *t*-time algorithm that achieves maximal advantage $\mathsf{Adv}_{\mathbb{G}}^{\mathsf{cdh}}(\mathcal{B})$. What can we say about worst-case advantage

$$\min_{x,y} \Pr\left[\mathcal{A}(x,y) = g^{\log_g x \log_g y}\right]?$$

Can there be a large number of pairs (x, y) for which the CDH problem is easy?

- (c) Provide a black-box reduction between DL and CDH problem.
- (d) Show that if there exists an efficient procedure that can always compute the highest bit of $\log_q y$ then the DL problem is easy.
- 5. Password checks in TENEX system was implemented as follows

```
int is_correct_password(char passwd[8])
{
    int i;
    for(i=0;i<8;++i)
    {
        if(passwd[i]!=true_passwd[i]) return 0;
    }
    return 1;
}</pre>
```

This implementation vulnerable against side-channel attacks. In brief, users could detect the last value of i before function returned value by allocating a right amount of memory before login attempts and by observing page faults. Let $\mathcal{B}(x)$ be the corresponding attack strategy, which returns the last value of i. Construct an efficient black-box reduction $\mathcal{A}^{\mathcal{B}}$ that recovers the correct password.

- 6. Consider a classical Turing machine without internal working tapes, i.e., the Turning machine has a single one-sided (input) tape that initially contains inputs and must contain the desired output after the execution.
 - (a) Show that all sorting algorithms take at least $\Omega(n^2)$ steps where *n* is the total length of inputs x_1, \ldots, x_k . What is the time-complexity of best sorting algorithms? Explain this contradiction.
 - (b) Does the minimal time-complexity change if the Turing machine has internal working tapes?
 - (c) Sketch how one can simulate execution of Random Access Machines on a Turing machine. What is the corresponding overhead?
 - (*) Construct a set of tasks that can be implemented significantly more efficiently on Turing machines with $\ell+1$ working tapes than on Turing machines with ℓ tapes.

Hint: It is well-known fact that reversing *n*-bit string takes $\Omega(n^2)$ steps on a Turing machine without working tapes.