MTAT.07.003 Cryptology II

Commitment Schemes

Sven Laur
University of Tartu
Formal Syntax
A randomised key generation algorithm Gen outputs a *public parameters* \(pk \) that must be authentically transferred all participants.

A commitment function \(\text{Com}_{pk} : M \rightarrow C \times D \) takes in a *plaintext* and outputs a corresponding *digest* \(c \) and decommitment string \(d \).

A commitment can be opened with \(\text{Open}_{pk} : C \times D \rightarrow M \cup \{ \perp \} \).

The commitment primitive is *functional* if for all \(pk \leftarrow \text{Gen} \) and \(m \in M \):

\[
\text{Open}_{pk}(\text{Com}_{pk}(m)) = m.
\]
Binding property

A commitment scheme is \((t, \varepsilon)-binding\) if for any \(t\)-time adversary \(A\):

\[
\text{Adv}^{\text{bind}}(A) = \Pr [G^A = 1] \leq \varepsilon
\]

where the challenge game is following:

\[
G^A
\]

\[
\begin{align*}
\text{pk} &\leftarrow \text{Gen} \\
(c, d_0, d_1) &\leftarrow A(\text{pk}) \\
\text{if } m_0 = \bot \text{ or } m_1 = \bot \text{ then return 0} \\
\text{else return } &\neg[m_0 \overset{?}{=} m_1]
\end{align*}
\]
Collision resistant hash functions

A function family \(\mathcal{H} \) is \((t, \varepsilon)\)-collision resistant if for any \(t \)-time adversary \(\mathcal{A} \):

\[
\text{Adv}_{\mathcal{H}}^{\text{cr}}(\mathcal{A}) = \Pr \left[G^A = 1 \right] \leq \varepsilon,
\]

where the challenge game is following

\[
G^A
\]

\[
\begin{align*}
&h \leftarrow \mathcal{H} \\
&(m_0, m_1) \leftarrow \mathcal{A}(h) \\
&\text{if } m_0 = m_1 \text{ then return 0} \\
&\text{else return } [h(m_0) \neq h(m_1)]
\end{align*}
\]
Hash commitments

Let \(\mathcal{H} \) be \((t, \varepsilon)\)-collision resistant hash function family. Then we can construct a binding commitment:

\begin{itemize}
 \item The setup algorithm returns \(h \leftarrow u \mathcal{H} \) as a public parameter.
 \item To commit \(m \), return \(h(m) \) as digest and \(m \) as a decommitment string.
 \item The message \(m \) is a valid opening of \(c \) if \(h(m) = c \).
\end{itemize}

Usage

\begin{itemize}
 \item Integrity check for files and file systems in general.
 \item Minimisation of memory footprint in servers:
 \begin{enumerate}
 \item A server stores the hash \(c \leftarrow h(m) \) of an initial application data \(m \).
 \item Data is stored by potentially malicious clients.
 \item Provided data \(m' \) is correct if \(h(m') = c \).
 \end{enumerate}
\end{itemize}
Hiding property

A commitment scheme is \((t, \varepsilon)\)-hiding if for any \(t\)-time adversary \(A\):

\[
\text{Adv}^\text{hid}(A) = |\Pr[\mathcal{G}_0^A = 1] - \Pr[\mathcal{G}_1^A = 1]| \leq \varepsilon,
\]

where

\[
\begin{align*}
\mathcal{G}_0^A & \\
& \begin{cases}
(pk \leftarrow \text{Gen}) \\
(m_0, m_1) \leftarrow A(pk) \\
(c, d) \leftarrow \text{Com}_{pk}(m_0) \\
\text{return } A(c)
\end{cases} \\
\mathcal{G}_1^A & \\
& \begin{cases}
(pk \leftarrow \text{Gen}) \\
(m_0, m_1) \leftarrow A(pk) \\
(c, d) \leftarrow \text{Com}_{pk}(m_1) \\
\text{return } A(c)
\end{cases}
\end{align*}
\]
Any cryptosystem is a commitment scheme

Setup:
Compute \((pk, sk) \leftarrow \text{Gen and delete } sk \text{ and output } pk\).

Commitment:
To commit \(m\), sample necessary randomness \(r \leftarrow \mathcal{R}\) and output:

\[
\begin{cases}
 c \leftarrow \text{Enc}_{pk}(m; r) , \\
 d \leftarrow (m, r).
\end{cases}
\]

Opening:
A tuple \((c, m, r)\) is a valid decommitment of \(m\) if \(c = \text{Enc}_{pk}(m; r)\).
Security guarantees

If a cryptosystem is \((t, \varepsilon)\)-IND-CPA secure and functional, then the resulting commitment scheme is \((t, \varepsilon)\)-hiding and perfectly binding.

- We can construct commitment schemes from the ElGamal and Goldwasser-Micali cryptosystems.
- For the ElGamal cryptosystem, one can create public parameters \(\text{pk}\) without the knowledge of the secret key \(\text{sk}\).
- The knowledge of the secret key \(\text{sk}\) allows a participant to extract messages from the commitments.
- The extractability property is useful in security proofs.
Simple Commitment Schemes
Modified Naor commitment scheme

Setup:
Choose a random n-bit string $\text{pk} \leftarrow \{0, 1\}^n$.
Let $f : \{0, 1\}^k \rightarrow \{0, 1\}^n$ be a pseudorandom generator.

Commitment:
To commit $m \in \{0, 1\}$, generate $d \leftarrow \{0, 1\}^k$ and compute digest

$$c \leftarrow \begin{cases} f(d), & \text{if } m = 0, \\ f(d) \oplus \text{pk}, & \text{if } m = 1. \end{cases}$$

Opening:
Given (c, d) check whether $c = f(d)$ or $c = f(d) \oplus \text{pk}$.
Security guarantees

If \(f : \{0, 1\}^k \rightarrow \{0, 1\}^n \) is \((t, \varepsilon)\)-secure pseudorandom generator, then the modified Naor commitment scheme is \((t, 2\varepsilon)\)-hiding and \(2^{2k-n}\)-binding.

Proof

Hiding claim is obvious, since we can change \(f(d) \) with uniform distribution. For the binding bound note that

\[
|\mathcal{PK}_{\text{bad}}| = \# \{ \text{pk} : \exists d_0, d_1 : f(d_0) \oplus f(d_1) = \text{pk} \} \leq 2^{2k} \\
|\mathcal{PK}_{\text{all}}| = \# \{0, 1\}^n = 2^n
\]

and thus

\[
\text{Adv}^{\text{bind}}(A) \leq \Pr[\text{pk} \in \mathcal{PK}_{\text{bad}}] \leq 2^{2k-n}.
\]
Discrete logarithm

Let $G = \langle g \rangle$ be a q-element group that is generated by a single element g. Then for any $y \in G$ there exists a minimal value $0 \leq x \leq q$ such that

$$g^x = y \iff x = \log_g y .$$

A group G is (t, ε)-secure DL group if for any t-time adversary A

$$\text{Adv}_{G}^{\text{dl}}(A) = \Pr [G^A = 1] \leq \varepsilon ,$$

where

$$G^A \begin{cases} y \leftarrow u \in G \\ x \leftarrow A(y) \\ \text{return} \ [g^x \overset{?}{=} y] \end{cases}$$
Pedersen commitment scheme

Setup:
Let q be a prime and let $\mathbb{G} = \langle g \rangle$ be a q-element DL-group.
Choose y uniformly from $\mathbb{G} \setminus \{1\}$ and set $pk \leftarrow (g, y)$.

Commitment:
To commit $m \in \mathbb{Z}_q$, choose $r \leftarrow \mathbb{Z}_q$ and output

\[
\begin{cases}
 c \leftarrow g^m y^r, \\
 d \leftarrow (m, r).
\end{cases}
\]

Opening:
A tuple (c, m, r) is a valid decommitment for m if $c = g^m y^r$.
Security guarantees

Assume that G is (t, ε)-secure discrete logarithm group. Then the Pedersen commitment is perfectly hiding and (t, ε)-binding commitment scheme.

Proof

▷ Hiding. The factor y^r has uniform distribution over G, since $y^r = g^{xr}$ for $x \neq 0$ and \mathbb{Z}_q is simple ring: $x \cdot \mathbb{Z}_q = \mathbb{Z}_q$.

▷ Binding. A valid double opening reveals a discrete logarithm of y:

$$g^{m_0}y^{r_0} = g^{m_1}y^{r_1} \iff \log g y = \frac{m_1 - m_0}{r_0 - r_1}.$$

Note that $r_0 \neq r_1$ for valid double opening. Hence, a double opener A can be converted to a solver of discrete logarithm.
Other Useful Properties
Extractability

A commitment scheme is \((t, \varepsilon)\)-\textit{extractable} if there exists a modified setup procedure \((pk, sk) \leftarrow \text{Gen}^*\) such that

\begin{itemize}
 \item the distribution of public parameters \(pk\) coincides with the original setup;
 \item there exists an efficient extraction function \(\text{Extr}_{sk} : \mathcal{C} \to \mathcal{M}\) such that for any \(t\)-time adversary \(\text{Adv}^{\text{ext}}(A) = \Pr[G^A = 1] \leq \varepsilon\) where
\end{itemize}

\[
\begin{align*}
G^A & \\
& \left[(pk, sk) \leftarrow \text{Gen}^* \\
& (c, d) \leftarrow A(pk) \\
& \text{if } \text{Open}_{pk}(c, d) = \bot \text{ then return } 0 \\
& \text{else return } \neg[\text{Open}_{pk}(c, d) \overset{?}{=} \text{Extr}_{sk}(c)]
\end{align*}
\]
Equivocability

A commitment scheme is *equivocable* if there exists

- a modified setup procedure $(pk, sk) \leftarrow \text{Gen}^*$
- a modified fake commitment procedure $(\hat{c}, \sigma) \leftarrow \text{Com}_{sk}^*$
- an efficient equivocation algorithm $\hat{d} \leftarrow \text{Equiv}_{sk}(\hat{c}, \sigma, m)$

such that

- the distribution of public parameters pk coincides with the original setup;
- fake commitments \hat{c} are indistinguishable from real commitments
- fake commitments \hat{c} can be opened to arbitrary values

\[
\forall m \in \mathcal{M}, (\hat{c}, \sigma) \leftarrow \text{Com}_{sk}^*, \hat{d} \leftarrow \text{Equiv}_{sk}(\hat{c}, \sigma, m) : \text{Open}_{pk}(\hat{c}, \hat{d}) \equiv m .
\]

- opening fake and real commitments are indistinguishable.
Formal security definition

A commitment scheme is \((t, \varepsilon)\)-equivocable if for any \(t\)-time adversary \(\mathcal{A}\)

\[
\text{Adv}^{\text{equiv}}(\mathcal{A}) = \left| \Pr \left[G_0^A = 1 \right] - \Pr \left[G_1^A = 1 \right] \right| \leq \varepsilon
\]

where

\[
G_0^A \\
\begin{align*}
\text{pk} &\leftarrow \text{Gen} \\
\text{repeat} &\rule{0pt}{2ex} \\
\quad m_i &\leftarrow \mathcal{A} \\
\quad (c, d) &\leftarrow \text{Com}_{\text{pk}}(m) \\
\quad \text{Give (c, d) to } \mathcal{A} &\rule{0pt}{2ex} \\
\text{until } m_i = \bot &\rule{0pt}{2ex} \\
\text{return } \mathcal{A}
\end{align*}
\]

\[
G_1^A \\
\begin{align*}
(pk, sk) &\leftarrow \text{Gen}^* \\
\text{repeat} &\rule{0pt}{2ex} \\
\quad (c, \sigma) &\leftarrow \text{Com}^*_{sk}, m_i \leftarrow \mathcal{A} \\
\quad d &\leftarrow \text{Equiv}_{sk}(c, \sigma, m) \\
\quad \text{Give (c, d) to } \mathcal{A} &\rule{0pt}{2ex} \\
\text{until } m_i = \bot &\rule{0pt}{2ex} \\
\text{return } \mathcal{A}
\end{align*}
\]
A famous example

The Pedersen is perfectly equivocable commitment.

▷ Setup. Generate $x \leftarrow \mathbb{Z}_q^*$ and set $y \leftarrow g^x$.

▷ Fake commitment. Generate $s \leftarrow \mathbb{Z}_q$ and output $\hat{c} \leftarrow g^s$.

▷ Equivocation. To open \hat{c}, compute $r \leftarrow (s - m) \cdot x^{-1}$.

Proof

▷ Commitment value c has uniform distribution.

▷ For fixed c and m, there exists a unique value of r.

Equivocation leads to perfect simulation of (c, d) pairs.
Homomorphic commitments

A commitment scheme is \(\otimes\)-homomorphic if there exists an efficient coordinate-wise multiplication operation \(\cdot\) defined over \(C\) and \(D\) such that

\[
\text{Com}_{pk}(m_1) \cdot \text{Com}_{pk}(m_2) \equiv \text{Com}_{pk}(m_1 \otimes m_2),
\]

where the distributions coincide even if \(\text{Com}_{pk}(m_1)\) is fixed.

Examples

- ElGamal commitment scheme
- Pedersen commitment scheme
Active Attacks
A commitment scheme is non-malleable wrt. opening if an adversary who knows the input distribution \(\mathcal{M}_0 \) cannot alter commitment and decommitment values \(c, d \) on the fly so that

\[\nabla A \text{ cannot efficiently open the altered commitment value } \overline{c} \text{ to a message } \overline{m} \text{ that is related to original message } m. \]

Commitment \(c \) does not help the adversary to create other commitments.
Formal definition

\[\mathcal{G}_0^A \]
\[
\begin{align*}
&pk \leftarrow \text{Gen} \\
&M_0 \leftarrow A(pk) \\
&m \leftarrow M_0 \\
&(c, d) \leftarrow \text{Com}_pk(m) \\
&\pi(\cdot), \hat{c}_1, \ldots, \hat{c}_n \leftarrow A(c) \\
&\hat{d}_1, \ldots \hat{d}_n \leftarrow A(d) \\
&\text{if } c \in \{\hat{c}_1, \ldots, \hat{c}_n\} \text{ then return 0} \\
&m_i \leftarrow \text{Open}_{pk}(\hat{c}_i, \hat{d}_i) \text{ for } i = 1, \ldots, n \\
&\text{return } \pi(m, m_1, \ldots, m_n)
\end{align*}
\]

\[\mathcal{G}_1^A \]
\[
\begin{align*}
&pk \leftarrow \text{Gen} \\
&M_0 \leftarrow A(pk) \\
&m \leftarrow M_0, \overline{m} \leftarrow M_0 \\
&(c, d) \leftarrow \text{Com}_pk(\overline{m}) \\
&\pi(\cdot), \hat{c}_1, \ldots, \hat{c}_n \leftarrow A(\overline{c}) \\
&\hat{d}_1, \ldots \hat{d}_n \leftarrow A(\overline{d}) \\
&\text{if } c \in \{\hat{c}_1, \ldots, \hat{c}_n\} \text{ then return 0} \\
&m_i \leftarrow \text{Open}_{pk}(\hat{c}_i, \hat{d}_i) \text{ for } i = 1, \ldots, n \\
&\text{return } \pi(m, \overline{m}_1, \ldots, \overline{m}_n)
\end{align*}
\]
A commitment scheme is non-malleable wrt commitment if an adversary \(A_1\) who knows the input distribution \(M_0\) cannot alter the commitment value \(c\) on the fly so that

\[\text{\(A_2\) cannot open the altered commitment value \(\overline{c}\) to a message \(\overline{m}\) that is related to original message \(m\).}\]

Commitment \(c\) does not help the adversary to create other commitments even if some secret values are leaked after the creation of \(c\) and \(\overline{c}\).
Can we define decommitment oracles such that the graph depicted above captures relations between various notions where

- NM1-XXX denotes non-malleability w.r.t opening,
- NM2-XXX denotes non-malleability w.r.t commitment.