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Outline

• The problem and motivation

• From data to distribution

• What is a reasonable geometry over the distributions?

? Coordinates, tangent vectors, distances etc.

• Why heat diffusion?

? Geodesic distance vs. Mercer kernel, Gaussian kernels.

• Building a model

• Extracting an approximate kernel
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How to build kernels for discrete data structures?

• Simple embedding of discrete vectors to Rn

? Works with vectors of fixed length

? It is ad hoc technique

• Embedding via generative models

? Theoretically sound

? What should be the right proximity measure?

? Proximity measure should be independent of parameterization!
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Parameterization invariant kernel methods

• Fisher kernels

K(x,y) = 〈∇`(x|θ),∇`(y|θ)〉

• Information diffusion kernels

K(x,y) = ???

• Mutual information kernels (Bayesian prediction probability)

K(x,y) = Pr [y|x] ∝
∫
p(y|θ)p(x|θ)p(θ)dθ

integrated over model class P with prior probability p(θ).
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Text classification

• Bag of word approach produces a count vector (x1, . . . , xn)

• Let the model class be a multinomial distribution.

• MLE estimate is

θ̂tf(x) =
1

x1 + · · ·+ xn
(x1, . . . , xn).

• Second embedding is inverse document frequency weighting

θ̂tfidf(x) =
1

x1wi + · · ·+ xnwn
(x1wi, . . . , xnwn)

wi = log(1/fi)

Special Course in Information Technology, 30.03.2004 Information diffusion kernels, Sven Laur

5



What is a statistical manifold?

• Statistical manifold is a family of probability distributions

P = {p(·|θ) : X → R : θ ∈ Θ} ,

where Θ is open subset of Rn.

• The parameterization must be unique

p(·|θ1) ≡ p(·|θ2) =⇒ θ1 = θ2

• Parameters θ can be treated as the coordinate vector of p(·|θ)
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Set of admissible coordinates and distributions

• The parameterization ψ is admissible iff ψ as a function of primary
parameters θ is C∞ smooth.

• The set of admissible parameterization is an invariant.

• We consider only such manifolds where log-likelihood function
`(x|θ) = log p(x|θ) is C∞ differentiable w.r.t θ.

• The multinomial family satisfies the C∞ requirement

`(x|θ) = log
m∏
j=1

θxj =
m∑
j=1

log θxj .
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Geometry ≈ distance measure

• Distance measure determines geometry. This can be reversed.

• Recall that the length of a path γ : [0,1] → P

d(p, q) =
1∫
0
‖γ̇(t)‖dt =

1∫
0

√
〈γ̇(t), γ̇(t)〉dt,

where γ̇(t) is a tangent vector.

• But the set P does not have any geometrical structure!!!

• We redefine (tangent) vectors—vectors will be operators.
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What is a vector?

• Vector will be operator that maps C∞ functions f : P → R to reals.
For fixed coordinates θ and point p natural maps ( ∂

∂θi
)p emerge(

∂

∂θi

)
p
(f) =

∂f

∂θi

∣∣∣∣
p
.

They will be basis of tangent space.

• For arbitrary differentiable γ we can express

f(γ(t))′ =
[
θ1(t)

′
(
∂
∂θ1

)
γ(t)

+ · · · θn(t)′
(
∂
∂θn

)
γ(t)

]
(f).

The operator in the square brackets does not depend on f and has
right type—it will be a speed/tangent vector.
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Is this a reasonable definition?

• The speed vector γ̇(t) uniquely characterizes the rate of change of
arbitrary admissible function f

γ̇(t)(f) = f(γ(t))′t

• There is a one-to-one correspondence

γ̇(t) 7−→θ (θ̇1(t), . . . , θ̇n(t)) ∈ Rn.

• The are coordinate transformation formulas between different bases(
∂

∂θi

)n
i=1

and
(
∂

∂ψi

)n
i=1

• We really cannot expect more, if there is no geometrical structure!!!
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Kullback-Leibler divergence

• The most reasonable distance measure between adjacent distribu-
tions p and q is the weighted Kullback-Leibler divergence

J(p, q) = Dp‖q +Dq‖p

=
∫
p(x) log

p(x)

q(x)
dx +

∫
p(x) log

p(x)

q(x)
dx,

• It quantifies additional utility if we use wrong distribution.

• In discrete case it means that we need J(p, q) times more bits for
encoding.
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What is a reasonable distance metrics?

Consider an infinitesimal movement along the curve γ(t).

• The corresponding change of coordinates is from θ to θ + θ̇∆t and
the distance formula gives

d(p, q)2 ≈ ∆t2‖γ̇(t)‖2 = ∆t2
n∑

i,j=1

θ̇iθ̇j

〈
∂

∂θi
,
∂

∂θj

〉

• Under mild regularity conditions

J(p, q) ≈ ∆t2
n∑

i,j=1

θ̇iθ̇jgij, gij =
∫
p(x) ·

∂`(x|θ)
∂θi

·
∂`(x|θ)
∂θj

dx.

• Hence, the local requirement d2(p, q) ≈ J(p, q) fixes geometry〈
∂
∂θi
, ∂
∂θj

〉
= gij.
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Limitations of geodesic distance

• Geodesic distance d(p, q) is the shortest path between p and q.

• Geodesic distance cannot be always used for SVM kernels

? SVM kernel (Mercer kernel) is a computational shortcut of

K(x,y) = Ψ(x) ·Ψ(y),

where Ψ : Rn → Rd is a smooth enough function.

? If geodesic distance corresponds to a Mercer kernel then there
must be only one shortest path between two points.
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Classification via temperature

• Consider two classes ”hot” and ”cold”, i.e. each data point has a an
initial amount of heat λi concentrated around a small neighborhood.

• All other points have zero temperature.

• Fix a time moment t. All points below zero belong to the class ”cold”
and others to the class ”hot”.

• Heat gradually diffuses over the manifold. If t → ∞ all points have
constant temperature. Varying t gives different levels of smoothing.

• Large t gives flatter decision border that is classification is more robust,
but also a less sensitive.
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How to model heat diffusion?

• Classical heat diffusion is given by partial differential equations

∂f

∂t
−∆f = 0

f(x,0) = f(x)

and by Dirichlet’ or von Neumann boundary conditions.

• In non-Euclidean geometry Laplace operator has a nasty form

∆f = detG−1/2
n∑

i,j=1

∂

∂θj

[
gij detG1/2 ∂f

∂θi

]

where gij are elements of inverse Fisher matrix G.
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Extracting the kernel

• In the Euclidean space Rn

∆f =
∂2f

∂x21
+ · · ·+

∂2f

∂x2n
.

• The solution corresponding to initial condition f(x)

f(x, t) = (4π)−n/2
∫

exp
(
−
‖x− y‖2

4t

)
f(y)dy

• Alternatively

f(x, t) =
∫
Kt(x,y)f(y)dy Kt(x,y) = exp

(
−
‖x− y‖2

4t

)

• In SVM-s f = λ1δx1 + · · ·+ λkδxk and integral collapses to a sum.
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Central theoretical result

Theorem
Let M be a complete Riemannian manifold. Then there exists a kernel
function K (heat kernel), which satisfies the following properties:
(1) K(x,y, t) = K(y,x, t);
(2) limt→0K(x,y, t) = δ(x,y);
(3) (∆− ∂

∂t)K(x,y, t) = 0;
(4) K(x,y, t) =

∫
K(x, z, t− s)K(z,y, s)dz.

The assertion means :
(1) if q converges parameter-wise p then J(p, q) → 0;
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A ”slight” drawback!

• There are few know closed form solutions of heat diffusion kernel.

• The approximation makes things complicated

Kt(x,y) ≈ K
(m)
t = (4πt)−n/2 exp

(
−
d2(x,y)

4t

)
[
ψ0(x,y) + ψ1(x,y)t+ · · ·+ ψm(x,y)tm

]
,

where d(x,y) corresponds to geodesic distance.

• Nasty but closed form formula for approximation terms exist.

• The approximation error is O(tm).

• The approximation does not have to be a Mercer kernel.
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Example: Geometry of multinomials

It is straightforward to compute Fisher information matrix of multinomial
family

gij =

0, if i 6= j,

1/θi, if i = j.

• There is no known closed form solutions.

• We need an easy way to compute geodesic distances.
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Isometry—a way to simplify things

• Isometry is C∞ differentiable map F : P → S that preserves lengths
of paths.

• The model will be n+ 1 dimensional positive orthant in Rn+1

S+ =
{
(x1, . . . , xn+1) : x21 + · · ·+ x2n+1 = 4

}
.

• It is easy to verify that

F (θ1, . . . , θn) = (2
√
θ1, . . . ,2

√
θn+1)

preserves lengths, ie. the length of vectors along curves are always
same.
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Example: Distances of trinomials
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Explicit form of multinomial kernel

• Since the shortest paths on the spheres are big circles

d(θ, θ′) = 2arccos(〈F (θ), F (θ′)〉)

= 2arccos
(√
θ1θ

′
1 + · · ·+

√
θn+1θ

′
n+1

)
,

where θn+1 = 1− θ1 − . . .− θ′m and θn+1 = 1− θ1 − . . .− θ′m.

• For the first order approximation O(t) it is sufficient to use

Kt(θ, θ
′) = (4πt)−n/2 exp

(
−

arccos2(
√
θ,
√
θ′)

t

)
.

• Compared with Gaussian kernel works better if the data is close to
edges.
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Gaussian vs. heat kernel
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Conclusion

• Information geometry provides parameterization independent kernels.

• Devising a kernel for more complex models requires enormous intel-
lectual effort.

• However, nothing stops us from using already derived kernels.

• SLT bounds are available — the asymptotic generalization perfor-
mance is essentially the same as Gaussian kernels with the same
dimension.
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