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Minimisation goal of the LASSO algorithm

Given: an output vector y and a design matrix X with columns x1, . . . ,xn.

Find: a coefficient vector β that minimises

Elasso = 1

2
· ‖y − Xβ‖2

2
+ λ · ‖β‖

1
(1)

Equivalent formulation: Find a coefficient vector β that minimises

Eols = ‖y − Xβ‖2

2
s.t. ‖β‖

1
≤ t (2)

Correspondence: Task (1) is Lagrange functional of Task (2).
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Explicit gradient of the cost function

Divide the set of feasible solutions R
n into octants sign(βi) = const.

Let s be the sign vector, i.e. si = sign(βi). Then in each octant

Elasso = 1

2
· (y − Xβ)2 + λ · stβ

∇βElasso = XtXβ − Xty + λ · s

If the minimum is an internal point, then the solution has a form

β? = (XtX)−1(Xty − λs)
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What happens in the boundaries?

For the minimisation over a boundary, we explicitly require

βi = 0 for all i ∈ N

βi ∈ R for all i ∈ A

Hence, the cost function simplifies

Elasso = 1

2
· (y − XAβA)2 + λ · sA

tβA

∇βA
Elasso = Xt

AXAβA − Xt
Ay + λ · sA

and thus

β?
A = (Xt

AXA)−1(Xt
Ay − λsA)

β?
N = 0
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Geometrical interpretation of β?

If β? is an internal point, then the corresponding prediction vector

µ = Xβ? = X(XtX)−1(Xty − λs) = µols − λ · X(XtX)−1s
︸ ︷︷ ︸

u

where u is an equiangular to the vectors s1x1, . . . , snxn

Xtu = XtX(XtX)−1s = s = (±1, . . . ,±1)t

To summarise, a small change in λ moves µ in the direction of u.
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What happens in the boundaries?

Let β? be the internal point of a boundary with working set A, i.e.

βi = 0 for all i ∈ N

βi 6= 0 for all i ∈ A

Then the corresponding prediction vector

µ = XAβ?
A = XA(Xt

AXA)−1(Xt
Ay − λsA) = µA − λ · XA(Xt

AXA)−1sA︸ ︷︷ ︸
uA

where uA is equiangular to the vectors sixi, i ∈ A

Xt
AuA = XtXA(Xt

AXA)−1sA = sA = (±1, . . . ,±1)t

To summarise, a small change in λ moves µ in the direction of uA.
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Informal description of LARS

LARS is a greedy optimisation algorithm:

• Starts from the extreme boundary: A = ∅, β0 = 0 and µ0 = 0.

• Moves along the “optimal” path in space vector space 〈xi, i ∈ A〉.

• Occasionally, extends to higher dimension.

• Always chooses the most profitable vector xi to add.

• Finally, reaches the ordinary least squares solution.

W.l.o.g. we can assume that the working set Ak = {1, . . . , k}.
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The LARS path. Steady phase
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Equiangular vector uk = yk − µk−1 and µ(γ) moves along µk → µk+1

µ(γ) = µk−1 + γuk = yk − γuk

Parameter λ decreases and t increases in the path.
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The LARS path. Regime change
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Two paths µ(γ) = yk − γuk and µ(γ) = yk+1 − γuk+1 intersect at µk.

• Therefore, c(γ) = Xt(y − µ(γ)) must have k + 1 equal components.
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The LARS path. Greedy nature
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The LARS algorithm chooses the most advantageous dimension to extend.
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Guessing the correct take-off point
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The first cj(γ) that intersects with the boundary reveals the next vector.
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Guessing the correct take-off point

Consider a the LARS in steady phase. The path point µ(γ) = µk−1 + γuk

can belong to the optimal path for 〈x1, . . . ,xk+1〉 iff

ck+1 = xt
k+1

(y − µ(γ)) = xt
k+1

(yk+1 − µ(γ)) = ck+1 − γak+1

ck = xt
k(y − µ(γ)) = xt

k(yk+1 − µ(γ)) = c? − γak

are equal.

The LARS algorithm chooses the next vector in a greedy way

γ̂ = min {γ > 0 : |c? − γak| = |cj − γaj| , j ∈ N}

ĵ = argmin {γ > 0 : |c? − γak| = |cj − γaj| , j ∈ N}
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Guessing the correct take-off point
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We have to minimise ‖y − Xβ‖2

2
w.r.t. ‖β‖

1
≤ t

• Moving along the line increases t.

• Choosing the first take-off point guarantees that, we remain on optimum
line after the direction change.

• Formally, for any t the covariance vector c(t) = Xt(y − µ(t)) satisfies

|cj(t)| ≤ |ci(t)| i ∈ A j ∈ N
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What about signs of βk+1?

If the LARS extends to next dimension it must correctly guess the signs

µ(λ) = µA − λ · XA(Xt
AXA)−1sA︸ ︷︷ ︸

uA

• Sign variables si for i = 1, . . . , k are known from previous step.

• In steady phase |βk+1(λ)| grows monotonically—caused by equiangularity.

Xt XXt(XtX)−1sjej︸ ︷︷ ︸
vj

= sjej

uk+1 = v1 + · · · + vk+1

⇒ xi⊥vj and sjxj ↑↑ vj

I.e. ck+1 = xt
k+1

(y − µk) has the same sign as sk+1.

• Unfortunately, this is not true for other coordinates.

T-122.102 Regularization and sparse approximations, February 8, 2005 13



When does the LARS and LASSO coincide

If if the design matrix is orthogonal, we might be a sign problem.
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The take-off point is correct, but there are more turns in the path.
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Quick fix to LARS algorithm

Check for sign changes:

• Compute βk and βk+1

• If there is no sign change, i.e. βk,iβk+1,i ≥ 0, proceed as usual.

• Otherwise, find largest intermediate vector β such that βk,iβk+1,i ≥ 0.

- Find corresponding µ and store it as µk+1.

- Remove k + 1 from the working list. Recompute direction u.

- Proceed with the next LARS step.
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Quick recap to Stagewise algorithm

Let ε > 0 be small enough (infinitely small).

• Choose the coordinate i that has the biggest impact on squared error.
Make a ε-step in appropriate direction towards ci.

∇βEsqe = Xt(Xβ − y) = Xt(µ − y) = −c

• If we take infinitesimal steps, we follow the minimising path, except:

- active correlations cj and ∆βj have same sign.

• Fix to the LARS algorithm. When a jth coordinate of uk+1 has
different sign than c, determine active Stagewise coordinates with a
projection. Update working list A and the vector uA.
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Why does the fix work?
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The Stagewise algorithm with infinitesimal ε > 0 assures that

|cj(t)| ≤ |ci(t)| i ∈ A j ∈ N and ∆βici ≥ 0

Projection is a clever way to determine active working set.
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Final remarks

• The LASSO algorithm minimises the true objective, but sometimes make
more steps than the LARS algorithm.

• The LARS skips several LASSO steps. Hopefully, the LASSO and LARS
paths are different for small regions.

• The Stagewise algorithm provides the most heuristic approach, but is
more widely applicable.

• For large datasets (design matrices) they all perform relatively similarly.

The column vectors of the large design matrix are almost orthogonal
with high probability.
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