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Minimisation goal of the LASSO algorithm

(GIVEN: an output vector ¢y and a design matrix X with columns x4, ..., x,,.

FIND: a coefficient vector 3 that minimises

2
Elasso:%' ’|y_X/3H2+)‘ H5||1 (1)

EQUIVALENT FORMULATION: Find a coefficient vector 3 that minimises

2
Eos = ||y — X/BHQ s.t. ||/3H1 <t (2)

CORRESPONDENCE: Task (1) is Lagrange functional of Task (2).
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Explicit gradient of the cost function

Divide the set of feasible solutions R™ into octants sign((;) = const.

Let s be the sign vector, i.e. s; = sign(f;). Then in each octant

Elasso — % ) (y — X6)2 + A ST/8
Vg FEasso = X'XB—-X'y+A-s

If the minimum is an internal point, then the solution has a form

B* = (X"X) " (X"y — As)
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What happens in the boundaries?

For the minimisation over a boundary, we explicitly require

B; =0 for all ieN
B; € R for all 1e A

Hence, the cost function simplifies

Elasso = % . (y - XA/B.A)2 + A S.AT/B.A
V,B_AEIasso — Xj;lX.AIB.A - Xj;ly + A SA

and thus

B = (X4X ) ' (Xy — Asa)
By =0
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Geometrical interpretation of 3*

If 3* is an internal point, then the corresponding prediction vector

p=XB"=X(X"X)"H X"y —Xs) = pos — A - X(X"X)'s

where u is an equiangular to the vectors s1xq,...,s,Tn
X'u=X"X(X"X)1s=5=(+1,...,41)

To summarise, a small change in A moves i in the direction of .
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What happens in the boundaries?

Let B* be the internal point of a boundary with working set A, i.e.

B; =0 for all ie N
B; # 0 for all 1€ A

Then the corresponding prediction vector

po=XaB% = Xa(X4XA) "Xy —Asa) = pa— A Xa(X3XA) 'sa
uA

where u 4 is equiangular to the vectors s;x;, i1 € A
Xua=X"XAX4X4) s a=584=(F1,...,£1)

To summarise, a small change in A moves gt in the direction of u 4.
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Informal description of LARS

LARS is a greedy optimisation algorithm:

e Starts from the extreme boundary: A =0, By = 0 and po = O.
e Moves along the “optimal” path in space vector space (x;,7 € A).
e Occasionally, extends to higher dimension.

e Always chooses the most profitable vector x; to add.

e Finally, reaches the ordinary least squares solution.

W.l.o.g. we can assume that the working set A, = {1,...,k}.
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The LARS path. Steady phase

SPY )

. > 5101
M1

Equiangular vector ug = Yy, — ptx—1 and p(y) moves along pg — gt

p(y) = pr—1 + YUk = Y, — YUk

Parameter \ decreases and ¢ increases in the path.
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The LARS path. Regime change

Two paths p(v) = yr — yur and pu(y) = Y1 — YUk41 intersect at pug.

e Therefore, c(v) = X" (y — p(y)) must have k + 1 equal components.
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The LARS path. Greedy nature

I3

Ko

The LARS algorithm chooses the most advantageous dimension to extend.
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Guessing the correct take-off point

The first ¢;(y) that intersects with the boundary reveals the next vector.
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Guessing the correct take-off point

Consider a the LARS in steady phase. The path point p(v) = pr—1 +Yug
can belong to the optimal path for (xq,...,xTr11) iff

Cht1 = Ty 1 (Y — (V) = Tp s (Y1 — 1Y) = 1 — Yak41

cr =2, (Y —pn(y) =x,Ypr — () =c —yax

are equal.

The LARS algorithm chooses the next vector in a greedy way

¥y= min{y>0:|c" —yai| = |¢; —va,;|,j € N}
jy\:argmin{’y> 0 : ]c*—’YCLk| — ‘Cj—’Yaj|7j EN}
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Guessing the correct take-off point

We have to minimise ||y — X 3|5 w.rt. ||3]|, <t

e Moving along the line increases t.

e Choosing the first take-off point guarantees that, we remain on optimum
line after the direction change.

e Formally, for any ¢ the covariance vector ¢(t) = X" (y — p(t)) satisfies

G <lat)]  i€A jeN
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What about signs of 35,17

If the LARS extends to next dimension it must correctly guess the signs

() = pa— X Xa(X3Xa) 's4
uA
e Sign variables s; fort =1,...,k are known from previous step.

e In steady phase |Gx11(\)| grows monotonically—caused by equiangularity.

X" XX"X"X) 's;e; = sje;
vj = r;lv; and s;x; 1T v;
Up41 = V1 + -+ Vpga
l.e. cpr1 =y (Y — px) has the same sign as sy 1.

e Unfortunately, this is not true for other coordinates.
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When does the LARS and LASSO coincide

If if the design matrix is orthogonal, we might be a sign problem.

2 13

R - o [ N}
T

The take-off point is correct, but there are more turns in the path.
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Quick fix to LARS algorithm

Check for sign changes:
e Compute Bk and Bri1

o If there is no sign change, i.e. By ;Bk+1,s > 0, proceed as usual.

e Otherwise, find largest intermediate vector 3 such that 3 ;841 > 0.

- Find corresponding p and store it as pig1.
- Remove k + 1 from the working list. Recompute direction w.

- Proceed with the next LARS step.
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Quick recap to Stagewise algorithm

Let € > 0 be small enough (infinitely small).

e Choose the coordinate ¢ that has the biggest impact on squared error.
Make a e-step in appropriate direction towards c;.

V,BEsqe — XT(XB - y) — XT(/*” - y) — —C

e |f we take infinitesimal steps, we follow the minimising path, except:

- active correlations ¢; and AB; have same sign.

e Fix to the LARS algorithm. When a jth coordinate of wgiq has
different sign than ¢, determine active Stagewise coordinates with a
projection. Update working list A and the vector u 4.
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Why does the fix work?

&

The Stagewise algorithm with infinitesimal ¢ > 0 assures that
|Cj<t)‘ < |Cz(t)‘ 1 e A ] € N and AﬁzC@ >0

Projection is a clever way to determine active working set.
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Final remarks

e The LASSO algorithm minimises the true objective, but sometimes make
more steps than the LARS algorithm.

e The LARS skips several LASSO steps. Hopefully, the LASSO and LARS
paths are different for small regions.

e The Stagewise algorithm provides the most heuristic approach, but is
more widely applicable.

e For large datasets (design matrices) they all perform relatively similarly.

The column vectors of the large design matrix are almost orthogonal
with high probability.
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