Security models and proofs: Insights and examples

Sven Laur
Historical perspective

2000 Pfitzmann, Schunter, Waidner
Cryptographic Security of Reactive Systems.

2002 Canetti, Lindell, Ostrovsky, Sahai,
Universally composable two-party and multi-party secure computation.

2003 Lindell, *General Composition and Universal Composability in Secure Multi-Party Computation.* (Security in arbitrary comp. context.)

2005 Serge Vaudenay, *Secure Communications over Insecure Channels Based on Short Authenticated Strings.*
In-band communication is routed via malicious adversary, Malice, who can read, insert, drop and modify messages.

Out-of-band communication is authentic and sometimes secret. Malice can only read, delay and reorder messages.

Malice succeeds in deception if Alice and Bob accept different outputs.
Classical message authentication

Send $k \leftarrow \mathcal{K}$ over a confidential channel.

Send m and a tag $\text{tag} = h(m, k)$.

Bob accepts m iff $\text{tag} = h(m, k)$.

As Malice does not know the secret key k there are two attack types:

- Impersonation attacks. Malice tries to inject a message \hat{m} when Alice has not sent any messages.

- Substitution attacks. Malice tries to change a message m into \hat{m} by choosing a proper $\hat{\text{tag}}$.
Necessary properties of the hash functions

Impersonation attacks. For every message m, the tag distribution

$$D_m = \{h(m,k) : k \leftarrow K\}$$

must be (computationally) close to uniform distribution.

Substitution attacks. The tag $h(m,k)$ should reveal minimal amount of information about the key and tag, i.e., a (computational) conditional entropy $H(h(\hat{m},k)|h(m,k))$, $m \neq \hat{m}$ must be maximal.

There are hash-functions (**perfect hash functions**) that provide optimal information-theoretic security for a single protocol run. Many fast and computationally secure message authentication codes are built on top of information-theoretic counterparts using pseudorandom generators.
Towards Bellare-Rogaway model

Add to the stand-alone model

• Man-in-the-middle attack
• Interleaving attack
• Random timing
• Worst possible scenario
Security in Bellare-Rogaway model

- Is the classical message authentication protocol secure in BR-model?
- If not under which restrictions this protocol is secure?
- How to construct a corresponding mutual authentication protocol?
MANA II protocol

Deliver data m to both parties.

Verify that the data m is ready.

Send a random key $k_a \leftarrow \mathcal{K}$ to Bob.

Verify $k_a = k_b$ and $h(m_a, k_a) = h(m_b, k_b)$.

Security proof

- What happens if Malice does not deliver data before synchronisation?
- What happens if Malice changes k to \hat{k}?
- How is the remaining attack called? Which properties must h satisfy?
Security in Bellare-Rogaway model

Let the final check value of MANA II be 2^ℓ bits long (i.e. $2^{-\ell}$-secure). Let q be the maximal number of protocols run in parallel.

• Show that MANA II is not secure in BR-model?
• Give a simple lower bound on security w.r.t. q and ℓ?
• Is the lower bound w.r.t. q and ℓ also the upper bound?
• If not under which restrictions this protocol is secure?
Rewinding is incompatible with parallel runs

Example: Blum’s coin flipping protocol run in parallel.

Alice sends a commitment $\text{Com}(x)$ for $x \leftarrow \{0, 1\}$ to Bob.

Bob sends $y \leftarrow \{0, 1\}$ to Alice who opens $\text{Com}(x)$ and both output $x \oplus y$.

Task 1: Force the output $x \oplus y = 0$ by sending different $\text{Com}(x)$ values.

Task 2: Force the output $x_i \oplus y_i = 0, \ i = 0, 1$ by sending:
- different $\text{Com}(x)$ values sequentially to Bob;
- different $\text{Com}(x)$ values concurrently to Bob.

Where is the catch? Why there is a state space explosion?
Security in any computational context

Bob

Alice

Computational context

F(x,y)

Which world?

Malice

Computational context
A protocol is secure in any computational context if:

- The protocol is secure in the stand-alone model.
- There is no rewinding arguments in the proof.
- Simulators used in the proofs are black-box and universal.
- Protocol messages can be separated from other messages.
What is the biggest challenge in stand-alone model?
Classification of authentication protocols

• Based on long pre-shared values:
 (a) Classical message authentication \textit{(pre-shared secrets)}
 – HMAC
 – CBC-MAC.
 (b) Public key infrastructure \textit{(pre-shared certificates)}
 – X.509 certificates and authentication

• Based on interactive authentic communication:
 (a) Password-based authentication \textit{(short confidential messages)}
 – WPA-PSK, WEP-TKIP
 – EKE, EKE2, SPEKE
 (b) Manual authentication \textit{(short authentic test tags)}
 – MANA II
 – MANA IV
Manually authenticated key exchange

- Classical key exchange + Manual authentication
 - MA–DH (\textit{specially optimised})

- Hybrid encryption + Manual authentication
 - manually authenticated hybrid encryption

- ???
Known upper bounds and corresponding attacks

- Guessing attack with success $2^{-\ell}$ affects
 - classical authentication
 - password-protected key exchange

- Simple collision attack with success $2^{-\ell}$ affects
 - manual authentication