Jadakoodid. Formalisatsioon

Algsed võrrandid

\[c_i^{(1)} = a_i + a_{i-2} \quad c_i^{(2)} = a_i + a_{i-1} + a_{i-2} \]

Formaalsete ridadega antud võrrandid

\[c^{(1)}(x) = (1 + x^2)a(x) \]
\[c^{(2)}(x) = (1 + x + x^2)a(x) \]
\[a(x)(1 + x^2 \quad 1 + x + x^2) = (c^{(1)}(x) \quad c^{(2)}(x)) = C(x) \]

Fikseerime nüüd edaspidiseks ringi \(F_2[x] \).

Definitsioon 1

\((n,k)\)-jadakoodiks mäluiga \(M \) nimetatakse hulka \(C \subseteq (F_2[x])^n \), kus \(k \leq n \) ja

\[C = \{ A(x)G(x) \mid A(x)^T \in (F_2[x])^k \}, \]

kus sisendite hulk \(A(x) \) on järgmisel kujul \(A(x) = (a^{(1)}(x) \quad a^{(2)}(x) \ldots a^{(k)}(x)) \) ja generaatormaatriks \(G \in Mat_{k,n}(F_2[x]) \) iga elemendi aste \(\deg g_{ij}(x) \leq M \) ning koodsõnadeks on reavекторi \(C(x) = A(x)G \) vastavate \(x \) astmete kordajatest \(c_k^{(i)} \) moodustatud reavекторide \((c_k^{(1)} \quad c_k^{(2)} \ldots c_k^{(n)}) \).
Jadakoodid. Omadused

Definitsioon 2

\((n,k)\)-jadakoodi generaatormaatriksiga \(G\) nimetatakse pööratavaks, kui leidub polünoomiaalsete elementidega maatriks \(H\) nii, et \(GH^T = I_k\).

Teoreem 1 Generaatormaatriksi dekompositsioon

\((n,k)\)-jadakoodi generaatormaatriks \(G\) on viidav kujul \(G = U \Delta V\), kus \(U\) on \(k \times k\), \(\Delta\) on \(k \times n\) ja \(V\) on \(n \times n\) maatriksid. Kusjuures kõik maatriksite \(U,V\) ja \(\Delta\) elemendid on polünoomid. Maatriks \(\Delta\) on diagonaalsetel kujul st. \(\Delta_{i,i} = \delta_i\) ning \(\Delta_{i,j} = 0\). Maatriksid \(U\) ja \(V\) on regulaarsed, kusjuures det \(U = \text{det} V = 1\).

Märkus 1: Liikmeid \(\delta_i\) nimetatakse generaatormaatriksi invariantseteks teguriteks.

Märkus 2: Kehtib omadus \(\delta_1 | \delta_2 | \cdots | \delta_k\).

Märkus 3: Kui \(\gamma_i\) on suurim ühistegur \(i\)-ndat jätku miinorite determinantidest, siis \(\delta_i = \gamma_i / \gamma_{i-1}\).

Järeldus 1.1 Koodi pööratavus

Kood on pööratav siis ja ainult siis, kui \(\delta_1 = \delta_2 = \cdots = \delta_k = 1\).
Jadakoodid. Võres

Definitsioon 3
Me ütleme, et \((n,k)\)-jadakood on katastrofaalne, kui lõpmatu sisendjada(st. leidub lõpmata arv nullist erinevaid sisendbitte) kodeeritakse lõplikuks väljundjadaks.

Teoreem 2
\((n,k)\)-jadakood on katastrofaalne parajasti siis, kui tegur \(\gamma_k = \delta_1\delta_2\cdots\delta_k\) pole x aste.

Joonis 1: Eespool vaadatud \((2,1)\)-jadakoodi võres
Jadakoodid. Kaugus

Defitsioon 4

Kahe (kood)sõna $u(x) = (u^{(1)}(x), u^{(2)}(x), \ldots, u^{(n)}(x))$
ja $v(x) = (v^{(1)}(x), v^{(2)}(x), \ldots, v^{(n)}(x))$ vaheline (va-
ba)kaugus $d(u, v)$ on defineeritud

$$d(u, v) = \left| \left\{ (i, j) \mid u_j^{(i)} \neq v_j^{(i)}, \ i = 1, 2, \ldots, n \ j \in \mathbb{N} \right\} \right|.$$

Defitsioon 5

(n,k)-jadakoodi C kaugus d_{free} on defineeritud

$$d_{free} = \min \{ d(u, v) \mid u, v \in C \ ja \ u \neq v \}.$$

Märkus: Jadakoodi lineaarsusest saame, et

$$d_{free} = \min \{ d(u, 0) \mid u \in C \ \setminus \ \{0\} \}$$

Märkus: Kui jadakood pole katastrofaalne, siis reali-
seerib kauguse d_{free} üks tee jadakoodi võrreses, mis
algab seisust 0 ja lõpeb seisus 0.
Vitebi-dekodeerimisalgoritm

Lemma 1

Olgu \(v(x) \) vastuvõetud sõnum, siis serva e kaal \(w(e) \) jadakoodi võrises on servale e vastava väljundi Hammingi kaugus vastavast koodsõnast. Vastaku ajahetkele i võrese tipp \(s_i \), siis vähima kaaluga tee \(p_{s_i} \) on leitav rekursiivselt ning

\[
w(p_{s_i}) = \min_{s_{i-1}} \{w(p_{s_{i-1}}) + w(e), \text{ kus e ühendab tippu } s_{i-1} \text{ ja } s_i\}.
\]

Märkus: Seda tähelepanekut kasutavad algoritmi nimetatakse Vitebi-dekodeerimisalgoritmiks algoritmiks. Algoritmi keerukus sõltub kahest asjast:

- koodri võimalikkude sisendseisude arvust, mis on \(2^{Mk} \), kus \(M \) koodri mälu ja \(k \) sisendkanalite arv;

- võrreldavate teede pikkusest \(l \) (mahuline keerukus).

Üldiselt on ajaline keerukus \(O(2^{(M+1)k}) \) ning mahuline keerukus \(O(2^{(M+1)l}) \).
Vitebi-dekodeerimisalgoritm

Märkus: Kui on tarvis dekodeerida vaid osa sisendkanalitest, siis võib keerukus oluliselt langeda.

Märkus: Kui vaadelda binaarse sümmetrilise kanali asemel Gaussi kanalit, siis algoritm ei muutu oluliselt. Ainus erinevus on selles, et servade kaal arvutatakse vastavalt \(\| \cdot \|_2 \) suhtes.
Võrese teede loend

Joonis 2: Jadakoodri seisundite graaf

Teeme nüüd anneme igale servale \((m, c^{(1)}c^{(2)})\) kaalul \(x^{m}y^{c^{(1)}}z^{c^{(2)}}\), mis lubab taastada sisendi kaalu, väljundi kaalu ning teepikkuse(\(z\) aste). Seega on suvalisese teele \(\mathcal{P}\) seisundigraafis anda kaal \(w(\mathcal{P})\) kui servade kaalu korrutis.

Definitsioon 6

Seisundi graafi fundamentealteeks ninetatakse positiivse pikkusega teed, mis algab seisust \(s\) ja lõpeb seisus \(0\), ilma et oleks vahepeal läbinud seisus \(0\). Vii-mane tingimus tähendab ühtlasi ka seda, et tee \(0 \rightarrow 0\) pole fundamentaalne.
Võrese teede loend

Definitsioon 7
Fundamentaalteede loendiks $A_s(x,y,z)$, mis vastab koodri seisule s nimetatakse järgmist summat

$$A_s(x,y,z) = \sum_{P \text{ on fundamentaalteee } s \to 0} w(P) \quad (1)$$

Meie (2,1)-jadakoodi korral saame lihtsad seosed

$$A_{00}(x,y,z) = xy^2zA_{10}(x,y,z)$$
$$A_{01}(x,y,z) = y^2z + xzA_{10}(x,y,z)$$
$$A_{10}(x,y,z) = yzA_{01}(x,y,z) + xyzA_{11}(xyz)$$
$$A_{11}(x,y,z) = yzA_{01}(x,y,z) + xyzA_{11}(x,y,z)$$

Sõit saab LVS lahendada ning saame

$$A_{00}(x,y,z) = \frac{xy^5z^3}{1 - xyz(1 + z)} = xy^5z^3(1 + xyz(1+z) + \cdots)$$
Esimese vea tõenäosus

Olgu \(Pr^e(\mathcal{P}, 0) \) tõenäosus, et nullidele vastav sisend
dekodeeritakse teele \(\mathcal{P} \) vastavaks sisendiks. Siis esimese
vea tõenäosus on ülalt hinnatav

\[
P \leq \sum_{\mathcal{P} \text{ on fundamentaalne tee algusega } 0} Pr^e(\mathcal{P}, 0)
\]

Et

\[
Pr^e(\mathcal{P}, 0) = \sum_{k \geq [w/2]} \binom{w}{k} p^k (1 - p)^{w-k}
\]

\[
Pr^e(\mathcal{P}, 0) \leq (2\sqrt{p(1-p)})^w
\]

Teoreem 3

Dekoodri esimese vea tõenäosus \(Pr_1 \) on hinnatav
jadakoodi fundamentaalteede loendi abil

\[
Pr_1 \leq A_0(1, 2\sqrt{p(1-p)}, 1)
\]
Reaalsed kanalid ning modulatsiooni parandamine

Joonis 3: Reaalne sidekanal

Kui kasutada koos signaali moduleerimist ja kodeerimist vääib saada parema tulemuse. Tõenäosusjaotus Gaussi kanalis annab

\[
Pr(r \mid s) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(r-s)^2}{2\sigma^2}},
\]

mis tähendab, et mida suurem on \(|r - s|^2\) kaugus, seda tõenäolisemalt eristatakse lained \(s\) ja \(r\). Kasutades jadakoodirit võib vähendades korraga saadetava info mahtu vähendada kanali müra, kusjuures saadakse parem tulemus kui lihtsal infomahu vähendamisel.