
Paljastavad küsimused ehk

ligikaudne otsing

Sven Laur

swen@math.ut.ee

Tartu Ülikool



Road-map

• What is approximate matching?

• What can we do with approximate matching?

• There is no easy solution to secure approximate

matching.

• Secure randomised affine transformation.

• More efficient settings

• There is no easy solution.

• Conclusion



Motivation

How to sell the same thing twice? — Start a service!

• But collecting and systematising the information is

expensive.

• And some services violate privacy.

Usually privacy is not a main concern, except

• if queries reveal delicate information;

• if a leakage causes explicit economical expenses.

Onion-routing does not guarantee privacy, since

• a query itself can reveal the personality;

• a query itself can contain useful information.



Approximate matching

Alice

x

Bob

y1, y2, . . . , yn

d0 = min
i

d(x, yi)

i0 = argmin
i

d(x, yi)

Security considerations

• Bob should learn nothing about query vector x.

• Alice should learn nothing about the database,

except the match distance d0 and the match number

i0.

Efficiency considerations

• Communication complexity should be poly(log n).

• Computational complexity should be poly(n).



Example application: Symptom-action

type databases

Bob has accumulated knowledge in the following form.

• A symptom yi and an appropriate action Ii.

• Nearest neighbourhood search gives appropriate

action for an unknown x.

Alice

x

Bob

y1,y2, . . . ,yn

Public table

i 7→ Ii

• The protocol does not require private information

retrieval!

• An approximate matching might be more efficient!



Further analysis

• Approximate matching requires a secure evaluation

of minimum

d0 = min
i

d(x,yi).

• Currently, no efficient and cryptographically secure

minimum finding protocols are known.

• To bypass the problem, we include a trusted third

party Ursula.

Alice

x

Bob

y1,y2, . . . ,yn

Ursula

v1, v2, . . . , vn

d0, i0

• Naive implementations yield communication

complexity Θ(n).



From distance to scalar product

For the Euclidean distance, we must calculate

di = (x − yi)
2 = x2

− 2x · yi + yi
2.

Transformation

x = (x1, . . . , xm) 7→ x′ = (−2x1, . . . ,−2xn, 1),

y = (y1, . . . , ym) 7→ y′ = (y1, . . . , yn, y2
1 + · · · + y2

m)

gives

x′
· y′

i = −2x · yi + yi
2

and thus

d0 = x2 + min
i

x′
· y′

i,

i0 = argmin
i

x′
· y′

i.



MinDASP protocol (Du and Atallah)

The protocol hinges on the fact that

(x + RA
i ) · (y + RB

i )

= x · yi + RA
i · yi

︸ ︷︷ ︸

sB
i −rB

+(x + RA
i ) · RB

i︸ ︷︷ ︸

sA
i −rA

Therefore, we get a straightforward protocol

Alice Bob

Ursula

v0 = rA + rB + min
i

x · yi

RA
i , RB

i , rA, rb

wA
i

= x + RA
i

sA
i = wA

i
· RB

i
+ rA

wB
i

= yi + RB
i

sB
i = yi · RB

i
+ rB

v0

• Ursula gets additive shares vi = x · yi − rA − rB.

• For one database element all values are perfectly

masked, but this is not true for many items.



The attack

Note that

sB
i = RA

i · wA
i + rB = (wA

i − x) · wB
i + rB

and therefore

(wB
i − wB

1 ) · x = wA
i · wB

i − wA
1 · wB

1 − (sB
i − sA

i ).

Since Ursula knows everything except x, she can

compose a system of linear equations Mx = z.

• We calculated the exact probability that Mx = z

has a unique solution. The probability is too big.

• We offered two bug-fixes: a slight modification of

the protocol and a secure scalar product protocol

via homomorphic encryption.

• The latter reduces communication complexity

more than four times, however the computational

complexity rises.



General result

It is unreasonable to assume that Ursula knows nothing

about the database.

• Some database elements might be publicly known.

• During the longterm use of database, some vectors

might leak.

The protocol should remain secure if less than τ =
Θ(n) database elements are known to Ursula.

Theorem 1. All protocols, where Ursula obtains

additive shares vi = x ·yi+r, are insecure regardless

of used sub-protocols.

• If Ursula knows database vectors y1, . . . , yk, then

she can construct a system of linear equations.

• Under the random database assumption the system

has unique solutions with high enough probability.

• Otherwise the security depends on the specific

database!



The MinAffineSP protocol: The working

principle

• Public parameters are integers p, q, tmax, ttmin, so

that tmin ≈ 2160 and q(tmax + 1) < p.

• Alice and Bob jointly fix a random multiplier

t ∈ [tmin, tmax].

• Ursula obtains shares vi = t(x · yi mod q) + ri,

where ri ∈ Zt, that are randomly permuted.

• The smallest share v0 still corresponds to the

minimal scalar product.

• Alice can eliminate the randomness

min
i

x · yi =
⌊v0

t

⌋

.



The MinAffineSP protocol: The

implementation

Alice Bob

Ursula

v0 = min
i

t(x · yi) + ri

RA
i

, RB
i

, rA
i , rB

rA
i + rB

i ∈ Zt

wA
i

= x + RA
i

mod q

sA
i = (wA

i
· RB

i
mod q) + rA

i mod p

wB
i

= tyi + RB
i

mod p

sB
i = t(yi + ·RB

i
mod q) + rB

i mo

v0

After some tedious calculations

vi = (wA
i · wB

i mod q) − sA
i − sB

i

= t(x · yi mod q) + ri mod p.



The MinAffineSP protocol: The

preliminary security analysis

To break the protocol, Ursula must solve the system

of equations

txi + ri = zi, t ∈ [tmin, tmax],

where xi ∈ Zq, ri ∈ Zt are unknown.

• The values ri are uniformly distributed for correct t

and not generally uniformly distributed for t′ ∤ t.

• Small differences of vi − vj = ∆xi,jt + ri − rj can

suggest the values for t. If ∆xi,j = 1 then we have

a slight probability peak at t.

• Linear combinations a1v1 + · · · + amvm with small

coefficients of ai are more restrictive, since the true

random term a1r1 + · · · + amrm converges to the

normal distribution.

• But the probabilistic reduction increases the

uncertainty by m1/2 times.



More efficient settings: Secure storage

outsourcing problem

Consider a scenario

• First Alice outsources the database to Bob.

• Afterwards Alice needs match distances

min
i

(xj − yi)
2.

Security considerations

• Bob should learn nothing about database vectors

y1, . . . , yn and query vectors x1, . . . ,xk.

• The protocol should remain secure even if Bob

knows τ = Θ(n) vectors xj or yi.

Efficiency considerations

• The protocol should have only O(1) rounds.



General result

Proposed solutions use additive sharing, that is Bob

can calculate sij = (xj − yi)
2 + rj.

• The second security goal—a resistance against

leaking vectors—is not satisfied.

• The difference matrix ∆S = (∆sij), where

∆sij = sij − si1 − sj1 + s11 = −2∆xj∆yi,

reveals linear information.

• If the database does not belong to the hyper-plane

then the matrix columns reveal linear dependencies

between query differences ∆xj = xj − x0.

• The matrix rows reveal linear dependencies between

the differences ∆yi = yi − y1.



More efficient settings: Secure storage

and computing outsourcing problem

Alice

K

Bob

E(y1), . . . ,E(yn)

Carl

x

• First Alice outsources the database to Bob.

• Afterwards Carl composes queries with the help of

Alice.

• Alice helps Carl to decode the answers.



Practical requirements

Security considerations

• Bob should learn nothing about the database vectors

y1, . . . , yn and query vectors x1, . . . ,xk.

• Alice should learn nothing about the query vectors.

• Collusion between Bob and Carl is allowed

• The protocol should remain secure even if Bob

knows τ = Θ(n) vectors yi.

Efficiency considerations

• The protocol should have only O(1) rounds.



General result

Theorem 2. The protocols, where Bob obtains linear

shares sij = αj(xj−yi)
2+rj, are insecure regardless

of used sub-protocols.

• The second security goal—resistance against leaking

vectors—is not satisfied.

• Carl and Bob can restore originals of database

elements by gradient search.

• More subtle attacks are possible.



Conclusions: Curse of linearity

• It is hard to find the minimum when shares do not

have the linear form αx + r.

• But the linearity opens door to relatively simple

attacks based on linear algebra.

• The linear transformation is not safe a way to hide

data.


