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Abstract

In this thesis, we explain linear secret sharing schemes, in particular multi-
plicative threshold linear secret sharing schemes, over fields and rings in a
compact and concise way. We explain two characterisations of linear secret
sharing schemes, and in particular, we characterise threshold linear secret
sharing schemes. We develop an algorithm to generate all multiplicative
(t + 1)-out-of-n threshold linear secret sharing schemes over a field Z,. For
the ring Zy32, we explain the generation of secret sharing schemes for thresh-
old access structures and prove the non-existence of (t+1)-out-of-n threshold
linear secret sharing schemes with n > ¢ 4 1.
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Chapter 1

Introduction to Share
Computing

This thesis is about the mathematical background of share computing proto-
cols. Share computing protocols are used to aggregate sensitive data without
revealing the content of individual data records. Examples of such databases
and data aggregation problems are rather common. Databases containing
personal, medical or financial information about an individual such as racial
or ethnic origin, political views, religion, physical or mental health or crim-
inal offences are usually classified as sensitive. Governmental bodies and
researchers must be able to process such data in order to compute statis-
tics about the population as a whole, but in many countries it is illegal to
process such information without a special licence.

Privacy-preserving data mining provides a way of computing global prop-
erties from data without revealing properties of the data of an individual.
One way of implementing privacy-preserving data mining is to use secure
multi-party computation based on secret sharing (Figures 1.1-1.4). First,
the individual data is split into shares (phase 1) that by themselves do not
reveal any or marginally little secret information. Those shares are dis-
tributed to a number of miners (phase 2). This is called perfectly secure
or e-secure secret sharing. Each miner computes a function from its data
shares and reveals the result (phase 3). Those results are themselves shares
of a global function. The result of the global function may be reconstructed
from the shares (phase 4).
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Most practical implementations of secure multi-party computation use
linear secret sharing schemes, and in particular, threshold linear secret shar-
ing schemes. In this thesis, we will explain linear secret sharing schemes and
multiplicative linear secret sharing schemes and characterise them in two dif-
ferent ways. In particular, we will explain and characterise black box secret
sharing schemes. Further, we will explain threshold linear secret sharing
schemes and characterise those. We will use this characterisation to develop
an algorithm to generate all (¢ + 1)-out-of-n threshold linear secret sharing
schemes with one share per miner over the field Z, for a given threshold ¢
and given parameters n and p.

The platform SHAREMIND [5], a virtual machine for privacy-preserving
data processing developed at the University of Tartu, is an example of a
practical implementation of privacy-preserving data mining. The first ver-
sion of SHAREMIND was released in 2007. SHAREMIND securely computes
sums, products, and scalar multiples of secret data. The computations in
SHAREMIND are done over the ring Zgs2. The current implementation of
SHAREMIND uses a 3-out-of-3 threshold linear secret sharing scheme over
Zgs2. 'This means that there are three miners, and all three of them to-
gether should be able to reconstruct the result of a global function. No two
of them together or one of them alone, however, should be able to deduce



any secret information from their shares of the individual data. For certain
applications this is a rather weak security guarantee. Multiplicative (¢ + 1)-
out-of-n threshold linear secret sharing schemes provide a generic solution
to this problem. We prove that there are no (t+ 1)-out-of-n threshold linear
secret sharing schemes over Zgs2 with one share per miner if n > ¢t + 1.
There do, however, exist multiplicative (¢ + 1)-out-of-n threshold linear se-
cret sharing schemes over Zgs2 for n > t + 1 with more than one share per
miner. As an example, we estimate share sizes for multiplicative 3-out-of-5
and 4-out-of-7 threshold linear secret sharing schemes.

Most secret sharing schemes, however, are defined over a field, in partic-
ular the field Z,, where p is a prime. Shamir’s secret sharing scheme from
1979 [17] is the oldest (t+ 1)-out-of-n threshold linear secret sharing scheme
over Zy. In Shamir’s secret sharing scheme, the size of a share is the same
as the size of the secret. This is optimal for perfectly secure secret sharing
schemes. Only in e-secure secret sharing schemes, the size of a share may
be smaller than the size of the secret. In Shamir’s secret sharing scheme,
the share of miner ¢ is the evaluation of a random polynomial of degree t
at the point i. A natural question: Are the shares of any (¢ + 1)-out-of-n
threshold linear secret sharing scheme over a field Z, equal to the evaluation
of a random polynomial of degree t at some points? The answer is no. We
use our algorithm to generate many examples of Shamir and non-Shamir
threshold linear secret sharing schemes, and characterise 2-out-of-n Shamir
threshold linear secret sharing schemes.

Roadmap.

e Chapter 2 is a reference of important mathematical facts and defini-
tions for the reader.

e In Chapter 3, we define secret sharing schemes, and in particular,
linear secret sharing schemes. We characterise linear secret sharing
schemes in two ways.

e In Chapter 4, we define multiplicative linear secret sharing schemes
and again characterise multiplicative linear secret sharing schemes in
two ways. We explain the proof of the existence of (¢ + 1)-out-of-n
threshold linear secret sharing schemes over Zys2 with more than one
share per miner.

e Chapter 5 is about threshold linear secret sharing schemes. We char-
acterise threshold linear secret sharing schemes, and develop an algo-
rithm to generate all (¢ + 1)-out-of-n threshold linear secret sharing
schemes over a field Z,. Further, we prove the non-existence of (t+1)-
out-of-n threshold linear secret sharing schemes over Zgs2 with one
share per miner for n > ¢ + 1.



Chapter 2

Preliminaries

2.1 Fields and Rings

Secret sharing schemes are usually defined over finite fields. We will ex-
tend this definition to commutative rings, and define black box secret shar-
ing schemes over arbitrary Abelian groups. In this section, we will define
Abelian groups, commutative rings, and fields.

Definition 2.1.1 An Abelian group (G;x) is a set G together with a binary
operation x : G x G — G, such that the following hold:

- (Associativity)
Va,b,c € G,(axb)xc=ax*(b*c)

- (Commutativity)
Ya,b € G,axb=bxa
- (Identity element)
Jee Gst. VaceGaxe=exa=a

- (Inverse element)
VaceG,Ja ' eGst.axat=alxa=e

Definition 2.1.2 Let G be a group. A set H is said to be a subgroup of G
if H ¢ G and (H; %) is a group.

Definition 2.1.3 Let (G; %) be an Abelian group, and let H be a subgroup
of G. Let g € G. The set gxH = {g* h : h € H} is said to be a coset of G.

Definition 2.1.4 Let (G;*) be an Abelian group, and let H be a subgroup
of G. The set G/H = {g+H : g € G} is said to be a quotient group of G.

Definition 2.1.5 A group homomorphism is amap ¢ : G — H from a group
(G; %) to a group (H;e) such that ¢(a *b) = ¢(a) e ¢(b) for all a,b € G.



Definition 2.1.6 An automorphism is a group homomorphism from a group
G to itself.

Definition 2.1.7 A group (G; ) is said to be cyclic if there exists g € G
such that for all a € G, there exists k € N such that a = g*xg*---xg.
—_—

k times

We say that g generates G.

Definition 2.1.8 A characteristic subgroup of a group G is a subgroup H
of G such that for each automorphism ¢ : G — G, ¢(H) = H.

Fact 2.1.9 Every subgroup of a cyclic group is characteristic.

The platform SHAREMIND is defined over the group Zss2. We will use
Corollary 2.1.12 below to prove the non-existence of certain secret sharing
schemes over Zgss.

Fact 2.1.10 Let n,k € N. Then (Zy;+) is a subgroup of (Zyn;+) if and
only if k is a divisor of n.

Fact 2.1.11 (Zy;+) is a cyclic group with generator 1 for all n € N.

The following is a corollary of Facts 2.1.10, 2.1.11, and 2.1.9.

Corollary 2.1.12 Let n,k € N. Then (Zy;+) is a characteristic subgroup
of (Zn;+) if and only if k is a divisor of n.

Definition 2.1.13 A commutative ring is a set L together with two binary
operations addition 4+ : L. x . — I and multiplication - : L x . — L, such
that the following hold:

- (L;4) is an Abelian group with identity element 0

- (Associativity of multiplication)
Va,b,ceL,(a-b)-c=a-(b-c)

- (Commutativity of multiplication)
Va,beL,a-b=b-a

- (Identity element of multiplication)
dleLst.Vaell,a-1=1-a=a

- (Distributivity)
Va,b,ce L, a-(b+c)=(a-b)+ (a-c)

In this thesis, we will give examples of secret sharing schemes over the
ring Zy .



Definition 2.1.14 Let L be a commutative ring. A set M is said to be a
subring of L if (M +) is a subgroup of (L;+), 1 € M, and for all a,b € M,
a-be M.

Definition 2.1.15 Let L. be a commutative ring. If there exists a positive
integer N such that 14 ---4+1 = 0 the characteristic of L is defined to
—_——

N times

be the smallest such N. If for all positive integers N, 1 +---+1 # 0, we
——

N times
define the characteristic of L to be zero. We denote the characteristic of L.

by char L.
Fact 2.1.16 The characteristic of a finite commutative ring is non-zero.

Definition 2.1.17 Let (L;+,-) be a commutative ring. An element a € L
is said to be invertible if there exists a (unique) element b € LL such that
a-b=1. We say that b is the inverse of a.

Definition 2.1.18 Let (L;+,-) be a commutative ring. A non-zero element
a € L is said to be a zero divisor if there exists a non-zero element b € L
such that a-b = 0.

We will denote the number of zero divisors in a ring . by ZD(L).

Fact 2.1.19 Let (L;+,-) be a finite commutative ring. Then a € L is a
zero divisor if and only if a is not invertible.

The ring Z is an example of a finite commutative ring with character-
istic N. The zero divisors of Zy are those a € Zy such that a and N have
a non-trivial common divisor. An element a € Zy is invertible if and only
if the greatest common divisor of @ and N is 1.

Definition 2.1.20 A field is a set K together with two binary operations
addition + : K x K — K and multiplication - : K x K — K, such that the
following hold:

- (K;+, ) is a commutative ring

- (Inverse element of multiplication)

VaeKdaleKst.a-al=atl-a=1

In this thesis, for all examples K = Z,,, where p is a prime.



2.2  Vector Spaces and Modules

In this section we will define vector spaces, which are defined over fields,
and modules, which are defined over commutative rings. For a linear secret
sharing scheme, the set of all shares is a vector space or a module. The set
of shares for the secret 0 is a subspace of the vector space of all shares or a
submodule of the module of all shares.

Definition 2.2.1 A vector space over a field K is a set V together with
two binary operations addition + : V x V — V and scalar multiplication
- K xV —V, such that the following hold:

- (V;+) is an Abelian group with identity element 0
- (Distributivity)

1. VvweV,aeK a (v+w)=(a-v)+ (a-w), and
2. VveV,aq,beK, (a+b)-v=(a-v)+ (b-v)

-YweV,abeK, (a-b)-v=a-(b-v)
-YveV,l-v=wv
An element of V is called a vector.

In the following, we will consider the vector space V = K" for some n <
o0. A vector v € K" is denoted by the tuple (vy, ..., v,), with vy, ..., v, € K.

Notation 2.2.2 We denote the vector (1,1,...,1) by 1. The ith unit vector
(0,...,0,1,0,...,0) with the ith element equal to 1 and all other elements
equal to 0 is denoted by e;.

Definition 2.2.3 Let V be a K-vector space. A set W is said to be a
subspace of Vif W C V and (W;+,-) is a K-vector space.

In this thesis, we will consider the vector space Z; and its subspaces.

Definition 2.2.4 Let (V;+,-) be a vector space, and let W be a subspace
of V. The set V/W = {v + W : v € V} is said to be a quotient space of V.

Definition 2.2.5 A module M over the commutative ring IL is a set M
together with two binary operations addition 4+ : Ml x Ml — M and scalar
multiplication - : . x Ml — M, such that the following hold:

- (M;+) is an Abelian group with identity element 0
- (Distributivity)

1. VYoweM,a€el,a (v+w)=(a-v)+ (a-w), and



2. VYveM,a,bel, (a+b)-v=(a-v)+ (b-v)

-YveM,a,bel, (a-b)-v=a-(b-v)
-YveM,l-v=w

In the following, we will consider the module M = " for some n < oo.
We denote an element v € M by the tuple (vy,...,v,), with vq,...,v, € L.

Fact 2.2.6 Every Abelian group G is a Z-module.

Definition 2.2.7 Let M be an L-module. A set O is said to be a submodule
of M if O C M and (Q;+, ) is an L-module.

We will in this thesis consider the module Z%; and its submodules.

Definition 2.2.8 Let (M;+,-) be a module, and let O be a submodule of
M. The set M/O = {v + O : v € M} is said to be a quotient module of M.

Definition 2.2.9 Let V be a vector space, and let vq,...,v, € V. The
vectors v, ..., U, are said to be linearly independent if

av1 + -+ o =0=a0;=---=a, =0

Definition 2.2.10 Let V be a vector space, and let vq,...,v, € V. The
vectors vy, . .., Uy are said to span V if for all v € V, there exist aq,...,q, €
K such that v = aqv1 + -+ + @, vy,. We say that the set {v1,...,v,} is a
spanning set of V.

Definition 2.2.11 Let V be a vector space, and let X be a subset of V. We
define the span of X to be the intersection of all subspaces of V containing
X. The span of X is denoted by span X.

Definition 2.2.12 Let V be a vector space, and let v1,...,v, € V. The
set V ={v1,...,v,} is said to be a basis of V if the vectors vy, ..., v, are
linearly independent and span V.

We define linear independence, spanning set, and basis analogously for
modules.

Fact 2.2.13 Fvery vector space has a basis.

Fact 2.2.14 Let V be a vector space. For any two bases Vi and Vo of V,
[Vi| = [Val.

Fact 2.2.15 Not every module has a basis.

10



Fact 2.2.16 Let M be a module. For any two bases M1 and Ms of M,
[Mi| = [My].

Definition 2.2.17 Let V be a vector space over a field K, and let V be a
basis of V. The rank of V is defined to be |V].

Notation 2.2.18 We denote the rank of a vector space V by dim V.

For a module M, we define the rank of M to be dimM = |M| if M has
a basis M.

Notation 2.2.19 For two vectors u and v, u-v denotes the standard inner
product of uw and v. By u x v, we denote the coordinatewise product of u
and v.

Definition 2.2.20 Let V be a vector space, and let W be a subspace of V.
The orthogonal complement of W is defined to be the set W+ = {v € V :
v-w =0 for all w € W}.

We define the orthogonal complement of a module M analogously.
Fact 2.2.21 Let V be a finite dimensional vector space. Then (V+)+ =V.

Fact 2.2.22 Let V and W be finite dimensional vector spaces. Then

WcCVevtcwt

2.3 Matrices

A linear secret sharing scheme may be defined in terms of matrices and
vectors. A share in a linear secret sharing scheme is defined as the product
of a matrix with elements in a field or a ring and a vector with elements in
a field or a ring. In this section, we define matrices and matrix operations.

Notation 2.3.1 Let M be a matriz. We denote the ith row of M by M;,
and by M7 we denote the jth column of M. The element in the ith row and
in the jth column of M is denoted by my;.

Notation 2.3.2 For a vector v and a matrizc M with e columns, v x M
denotes the matriz (vx M*||---||v « M¢). For a matriz M with e columns
and a matriz N with f columns, M x N denotes the matriz (M x N'||M*' %
N2|| - [[MY % N[ || M€ NN N2 - || M€ % N

Definition 2.3.3 The column rank of a matrix M is defined to be the
number of linearly independent columns of M. The row rank of a matrix
M is defined to be the number of linearly independent rows of M.

11



Fact 2.3.4 The column rank and the row rank of a matriz M are equal.
Notation 2.3.5 We denote the rank of a matriz M by rank M.

Definition 2.3.6 We say that a matrix M € L€ has full rank if rank M =
min {d, e}.

Fact 2.3.7 A square matrix M has full rank if and only if it is invertible.

Fact 2.3.8 A square matrix M has full rank if and only if its determinant
1s invertible.

Definition 2.3.9 The image of a matrix M € L*¢ is defined to be the
set InM = {w € LY : Jv € L¢s.t. Mv = w}. The kernel of a matrix
M € L€ is defined to be the set Ker M = {v € L¢: Mv = 0}.

Fact 2.3.10 Im M is a submodule of L, and Ker M is a submodule of 1€.

Fact 2.3.11 (Rank-nullity theorem) Let M be a matriz with n columns
over a field K. Then rank M + dim Ker M = n.

Definition 2.3.12 The transpose of a d x e matrix M = (m;;) is defined
to be the e x d matrix M7 = (mj;).

Fact 2.3.13 Let M be a matriz over a ring L. (Im M7T)+ = Ker M.
Fact 2.3.14 Let M be a matriz over a ring L. Im M* C (Ker M)=.

Fact 2.3.15 Let M be a matriz over a field K. ITm M”T = (Ker M)*.

Note that if M is a matrix over a ring L, then in general Im M7 #
(Ker M)*+. Consider L=Z,and M = (2 0 )T. Then Im M7 = {2a:a €
7}, and (Ker M)+ = Z.

Definition 2.3.16 An elementary row operation on a matrix M is one of
the following three operations on M:

- Row switching: R; < R;
- Row multiplication: R; — aR;, where « is an invertible scalar

- Row addition: R; — R; + aRR;, where « is a non-zero scalar

We define elementary column operations analogously.

Fact 2.3.17 If a square matriz M has full rank then it can be converted to
the identity matriz with elementary row operations.

12



Similarly, if a matrix M has full rank, then it can be converted to the
identity matrix with elementary column operations.

Fact 2.3.18 Elementary row or column operations do not change the rank
of a matriz.

Fact 2.3.19 Let N € Z%*®. Then the linear system of equations Nx = y
is solvable over Z if and only if it is solvable over Z,, for all integers m # 0

[10].

2.4 Boolean Functions

In a secret sharing scheme, only certain subsets of players, the qualified
subsets, should be able to reconstruct the secret from their shares, while
any other subsets of players, the unqualified subsets, should not be able
to deduce any information about the secret from their shares. The set of
qualified subsets is called the access structure of the secret sharing scheme,
and the set of unqualified subsets is called the adversary structure. The
access and adversary structures of a secret sharing scheme may be defined
in terms of a Boolean function. In this section, we will define Boolean
functions.
Let n be a positive integer.

Definition 2.4.1 A Boolean function f : {0,1}" — {0,1} is a function
which maps n-bit strings to 0 or 1. The function f is said to be mono-
tone if for all a;, b; € {0,1} such that a1 < by,...,an < by, f(a1---a,) <

We denote by I4 the bit string whose ith bit is 1 if i € A, and 0if i ¢ A.
We will denote f(I4) simply by f(A).

Definition 2.4.2 Let f: {0,1}" — {0, 1} be a monotone Boolean function.
The adversary structure A of f is defined to be the set of bit strings A such
that f(A) = 0. The access structure T" of f is defined to be the set of bit
strings A such that f(A) = 1.

Notation 2.4.3 For a set A C {1,...,n}, we will denote the complement
of Aby A={1,...,n}\ A.

Definition 2.4.4 Let f:{0,1}" — {0, 1} be a monotone Boolean function.
Its dual f* is defined by f*(A) = f(A).

Definition 2.4.5 Let f: {0,1}" — {0, 1} be a monotone Boolean function.
f is said to be Q2 if for all A, A" C {1,...,n} such that f(A4) = f(A") =0,
AUA £ {1,...,n}. fissaid to be Q3 if for all A, A", A” C {1,...,n} such
that f(A) = f(A) = f(4") =0, AUA UA" £{1,...,n}.

13



Definition 2.4.6 Let I' be an access structure, and let A =T be an adver-
sary structure. T is said to be Q2 if for all sets A, A’ € A AUA’ # {1,...,n}.
If for all sets A, A, A" e AAUAUA" #£{1,...,n}, T is said to be Q3.

Figure 2.1: Q2 Figure 2.2: Q3

2.5 Probability

The security of a secret sharing scheme is defined in terms of probability
distributions. A perfect secret sharing scheme is secure if for any two pos-
sible secrets s and s’ and corresponding sets of shares, it is not possible for
the unqualified subsets of players to deduce from their sets of shares for each
secret which secret the shares correspond to: the sets of shares are identi-
cally distributed. In this section, we will define probability spaces, discrete
random variables, elementary events, observable events, and probability dis-
tributions.

Definition 2.5.1 A probability space is a triple (Q, F(€2), Pr), where 2 is a
set, F(§2) is a set of subsets of {2 that is closed under complementation and
countable unions, and a measure Pr on (2, F(€2)) such that Pr(Q) = 1.

Definition 2.5.2 Let (2, F(f2), Pr) be a probability space. A discrete ran-
dom variable is a measurable function f: Q — {0,1}*.

Definition 2.5.3 Let (Q, F(£2),Pr) be a probability space, and let f be a
random variable. An elementary event is a set Q, = {w € Q: f(w) = y}.

Definition 2.5.4 Let (Q, F(€2),Pr) be a probability space, and let f be a
random variable. An observable event X € F(Q) is a union of elementary
events, the empty set (), or the set Q itself.

14



Definition 2.5.5 A probability distribution is a probability measure Pr :
F(Q) — [0,1] that assigns a probability Pr[X] € [0,1] to each observable
event X such that

1. Pr[{}]=0
2. PriQ] =1
3. Pr[X; UXs] =Pr[X;] + Pr[Xs] if X; and X5 are mutually exclusive

Definition 2.5.6 Let f and g be two random variables. We say that f and
g are identically distributed if f and g have the same probability distribution.

Notation 2.5.7 Let f and g be two random wvariables that are identically
distributed. We will denote this by f = g.

Definition 2.5.8 Let (Q2, F(€2), Pr) be a probability space. The statistical
distance between two random variables f,g : @ — {0,1}* is defined to be

SD(f,9) = 1 % cqouy- | Priw € Q1 f(w) = y] — Prlw € Q : g(w) = y].

2.6 Polynomial Interpolation

Shamir’s secret sharing scheme, defined over a field K, is one of the oldest
linear secret sharing schemes. Shamir’s secret sharing scheme is a special
case of linear secret sharing schemes — defined over a ring I — based on
polynomial interpolation. In this section, we will define interpolation poly-
nomials and Vandermonde matrices.

Definition 2.6.1 Let

1 o of af~!
1 ao ag ag_i
o
V=] 1 a3 o3 3 ,
1 am a2 an-t
denoted by V(ay, ..., ay), be an m xn matrix with a; € L forall 1 <i < m.

V is said to be a Vandermonde matriz.

Fact 2.6.2 The determinant of a square Vandermonde matrix V is given
by det V' = Hn2k>j21(aj — o).

Note that this determinant is invertible if (and only if) o; # «; is in-
vertible for all 1 < i,j < n. This means that V is invertible.

15



Fact 2.6.3 Let

1 o of ottt

1 ay o af~!
V= . .

1 ap, a2 an-!

be a square Vandermonde matriz. Define

n
T — o _ )
ri(e) = [ ——2L =rma" "tz 1<i<n,
AL a;—a
J=1.j#

The inverse of V is given by

i1 T21 T31 Tl
-1 T2 T22 T32 - Th2
Tin T2n T3n *°° Tnn
Example 2.6.4 Let
2
1 a1 of
V= 1 as a%
2
1 a3 o3

be a 3 x 3 Vandermonde matrix. The inverse of V' is given by

a0 ajas a1
(c1—az)(a1—a3) (az—o1)(az—a3) (az—ai)(az—a2)

vl = —(a2+a3) —(c1+a3) —(c1+a2)
(al—az)l(al—as) (a2—a1)1(a2—a3) (as—a1)1(a3—a1)

(a1—a2)(a1—a3) (az—ai)(az—a3) (az—or)(az—as)

Fact 2.6.5 (Lagrange’s interpolation theorem) Let K be a field, and
let ag,...,n,%0,.-.,yn € K such that o; # «; for all i # j. Then there
exists precisely one polynomial f over K such that deg f < n and f(a;) = y;
for alli, 0 < i < n. In particular, f(x) = yoro(x) + -+ + Ynra(x), where
ri(z) = 1o jzi %, 0<i<n.

Definition 2.6.6 The polynomial f is said to be an interpolation polyno-
maal.

Note that
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Chapter 3

Linear Secret Sharing
Schemes

The concept of secret sharing was introduced by A. Shamir [17] and G.
Blakley [4] in 1979. In a secret sharing scheme, a dealer splits a secret s into
d shares si,...,s84. Those shares are given to n players Pi,..., P,. Each
player is given one or more shares. Only the qualified subsets of players
are able to reconstruct s from their shares. Unqualified subsets of players
should not be able to deduce any information about s from their shares.

The set of qualified subsets is called an access structure, and the set
of unqualified subsets is called an adversary structure. Below, we formally
define monotone access structures and monotone adversary structures.

Let P = {1,...,n} denote the set of players, and let 2¥ denote the set
of all subsets of P.

Definition 3.0.7 A subset I' of the power set 27 is called a monotone access
structure on P if () ¢ T, and if for any A € I, any superset of A, A’ € 27 is
also in T'. A subset A of 27 is called an adversary structure on P if 27 \ A
is a monotone access structure.

This means that for any qualified subset of players, a larger subset of
players is also qualified. Analogously, for any unqualified subset of players,
a smaller subset of players is unqualified as well.

In section 3.1, we will formally define secret sharing schemes, and in
particular linear secret sharing schemes. Four linear secret sharing schemes
will be introduced as examples: Shamir’s secret sharing scheme, the additive
scheme, the CNF-based scheme (or replicated secret sharing scheme), and
the DNF-based scheme. In sections 3.2 and 3.3 we will characterise linear
secret sharing schemes in two ways. Finally, we will present a partial order
on linear secret sharing schemes in section 3.4. In this ordering, the CNF-
based scheme is maximal, while the DNF-based scheme is minimal.
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Secret sharing schemes are usually defined over finite fields. We will
extend this definition to commutative rings. In the following, we will use K
to denote a finite field. L. will denote a commutative ring, and G will denote
an Abelian group.

3.1 Functional Definition

Formally, a secret sharing scheme is defined by a tuple
S = (L, (L%, ... L), Share)

where L is a finite secret domain, each L% is a finite share domain with
d; >0 forall 1 <i<n,and Share: L — L% x ... x L% is a randomised
share distribution function which maps a secret s € L to an n-tuple of
share vectors s = (81,...,8n). Each share vector s; is a d;-tuple of shares
(Sz‘l, sy Sidi)'

Let d =dy + -+ d,. For a subset of players A = {i,...,ix} C P, let
da =di, +---+d;,, and let sa = (s;,]|---||s4,) be the concatenation of the
share vectors Sij 1<j5<k.

Let I" be an access structure.

Definition 3.1.1 A secret sharing scheme is said to be functional if for all
A = {iy,... i} €T, there exists a reconstruction function Recp : L% x
.- x L%k — L such that for any secret s € L,

Reca(Share(s)a) = s

Definition 3.1.2 A secret sharing scheme is said to be perfectly secure if
for all A ¢ T" and for any secrets s, s’ € L,

Share(s) 4 = Share(s’) 4

A secret sharing scheme is said to be e-secure if for all A ¢ I' and for any
secrets s, s’ € L,
SD(Share(s) 4, Share(s')4) < €

In this thesis, we will say that a secret sharing scheme is secure if (and
only if) it is perfectly secure.

In general, there exist both linear and non-linear secret sharing schemes.
Most practical secret sharing schemes are, however, linear.

Definition 3.1.3 A secret sharing scheme is said to be linear if for all
secrets s, t and all scalars o € L,

Share(as +t) = aShare(s) + Share(t)
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In fact, if the share distribution function is linear, then the reconstruction
function is linear, too.

Lemma 3.1.4 Let S be a linear secret sharing scheme over a ring L. For
any A € ', and for all secrets s,t and all scalars o € 1L

Reca(aShare(s) 4 + Share(t) 4) = aReca(Share(s)4) + Reca(Share(t) 4)

Proof. Let A € T'. Let s, t € L be two secrets, and let a € L
be a scalar. By linearity of Share, aReca(Share(s)a) + Reca(Share(t)4)
= as 4+t = Reca(Share(as + t) 4) = Reca(aShare(s) 4 + Share(t) 4). [ |

The additive secret sharing scheme (Fig. 3.1), the replicated secret shar-
ing scheme, or CNF-based secret sharing scheme (Fig. 3.2), and the DNF-
based secret sharing scheme (Fig. 3.3) are three examples of linear secret
sharing schemes (LSSSs).

Additive secret sharing scheme. Let I" be the trivial monotone access
structure {{1,...,n}}, and let s € L be the secret to be shared. For each
ie{l,...,n}, r; € Lis picked at random from L such that r; +---+r, = s.
Fach player FP; is given the share r;.

Clearly, the players in the only qualified subset {1,...,n} are able to
reconstruct s together. Let A ¢ T" be an unqualified subset. Let |A| = k < n.
Wlog A = {1,...,k}. For any k < n, the shares rq,...,r are uniformly
distributed. Hence, Share(s)4 = Share(s') 4 for all s’ € L.

3

&

P P; P P,

Figure 3.1: Additive scheme

CNF-based secret sharing scheme, or replicated secret sharing
scheme Rr. Let I' be a monotone access structure, and let 7 be the
set of all maximal unqualified subsets T" € I'. Let s € L be the secret to
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be shared. For each T' € 7, rp € LL is picked at random from I such that
> rer T = s. Each player P; is given the shares r7 such that j ¢ T

Let A € T be a qualified subset. By the monotonicity of I', A ¢ T for
all T € T. Thus, for all T € T, there exists j € A such that j ¢ T. In other
words, for each T" € 7T, there exists j € A such that player P; is given share
rr. Hence, the players in A are able to reconstruct s together. Let A ¢ T’
be an unqualified subset, then A C T for some T € 7. Thus, none of the
players in A is given share rp. Hence, Share(s) 4 = Share(s’) 4 for all s’ € L.

s

&
IT1 Itaf .o AT IT)
N AV
I'T1 I'T1
P—r11 P —ri2 P —Tinmipr P —TiaTi

Figure 3.2: CNF-based scheme

DNF-based secret sharing scheme. Let I' be a monotone access struc-
ture, and let @ be the set of all minimal qualified subsets Q € I'. Let s € L
be the secret to be shared. For each @) € Q, and for each j € Q, rg; is
randomly picked from IL such that ZjEQ rgj = s. Each player P; is given
the shares rg; such that j € Q.

Let A € I" be a qualified subset. Then A D @ for some Q € Q. Thus,
the players in A are able to reconstruct s. Let A ¢ I' be an unqualified
subset. By the monotonicity of I'y A 2 Q for all @ € Q. In other words, for
each @ € Q, there exists a j € @ such that j ¢ A. Thus, for each Q € Q,
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there exists a share rg; such that no player in A is given rg;. Therefore,
Share(s) 4 = Share(s’) 4 for all s’ € LL.

Fonjoy

roi /oroiz QUQI

Paon Pqiz P olol)1 P qiay

Figure 3.3: DNF-based scheme

Recall from linear algebra that a (deterministic) map « from an n-
dimensional vector space V with basis {v1,...,v,} to an m-dimensional
vector space W with basis {wi,...,wn} is linear if and only if there ex-
ists an m x n matrix M such that a(v;) = miwy + - -+ + Myyjwm, for all
1<j<n.

Over a field K, the (non-deterministic) map Share is linear if and only
there exist a matrix M with d rows and e columns whose first column is
equal to a fixed share vector for the secret 1 and whose e — 1 other columns
form a basis of the span of the share vectors for the secret 0, and a vector b
with e elements whose first element is equal to the secret s and whose e — 1
other elements are random such that s = Mb.

Lemma 3.1.5 Let S be a linear secret sharing scheme over a commutative

ring L. Then S = {Share(s) : s € L} is an L-module, and Share(0) is a
submodule of S.
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Proof. By the linearity of S, S is a module. Clearly, Share(0) C S. Again
by the linearity of S, Share(0) is a submodule of S: Let s, t € Share(0),
and let « € L. Then as € aShare(0) = Share(a0) = Share(0), and
s + t € Share(0) + Share(0) = Share(0 + 0) = Share(0). [ |

Lemma 3.1.6 Let S be a linear secret sharing scheme over a commutative
ring L. Let m € Share(1). Then for all s € L,

Share(s) = sm + Share(0)

Proof. Let s € Share(s). Then s — sm € Share(s) — sShare(l) =
Share(s — s1) = Share(0) by linearity of S. Hence, s € sm + Share(0). Con-
versely, let s € sm+Share(0). Then, sm+Share(0) C sShare(1)+Share(0) =
Share(s1 4 0) = Share(s) by linearity of S, and hence, s € Share(s). [

A priori, by Fact 2.2.15, over a ring Share(0) may not have a basis. Over
a field K however, Share(0) always has a basis by Fact 2.2.13.

Let ¢ be the rank of Share(0). Let M’ € K¢ be a d x €/-matrix whose
¢/ columns are the €’ basis vectors of Share(0). Fix m € Share(1). Let s € K,
and let s € Share(s). By Lemma 3.1.6, s = ms + M'b’, where b’ € K¢ is a
random €’-vector. Let e = ¢ + 1. Denote by M € K%*¢ the concatenation
(m||M’), and by b € K¢ the concatenation (s||b”). This means that if

my mir - Mie—1 by
m = : M = Lo C |, and ¥ = : ,
mq M1 -+ Mde—1 be—1
then
S
mi mit - Mie—1
b1
M = and b = .
Mg Mai -+ Mde—1 b ’
e—1

Finally, s = Mb. We will say that M is a share distribution matriz. In
the following, we will often define a linear secret sharing scheme over a field
directly by s = Mb, and denote it by Sy = (K, M). We will denote the set
{Shares,, (s) : s € K} by Sy.

For a matrix M with d rows and e columns, let M; be the matrix con-
sisting of the d; rows j of M such that share s;; is given to player F;. For
A = {i1,...,ix} € P, we denote by M4 the dg X e-matrix
M;

MA =
M;
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Similarly, for a vector m with d elements, we denote by m; the vector
consisting of the d; elements j of m such that share s;; is given to player
P;, and for A = {i1,...,ip} C P we denote by m 4 the d-vector

myy

mg,

Note that by Lemma 3.1.6, Share(1) = m + Share(0). This means that
we can always replace the first column of M by linear combinations m +
MM 4y M7t of m and the e — 1 columns of M’. Similarly, we can
always replace M’ by M'C', where C is an invertible (e — 1) x (e — 1) matrix.

Lemma 3.1.7 Let S be a linear secret sharing scheme over a ring L. Let
A € . If there exists a vector ra € LA such that ra-ma = 1 and such
that ra -z = 0 for all z € Share(0)4, then ra-sa = s for all s € L and
SA € Share(s)a.

Proof. Let s € L, and let s4 € Share(s)4. By Lemma 3.1.6, there exists
z € Share(0) 4 such that s4 = sma+z. Then, ra-s4 = s(rama)+ra-z=
s-14+0=s. |

Note that if r4 - ma = z and z is a zero divisor, then the players in A
are able to reconstruct s partially: s € {s' : z8’ = ra-sa}. Over a field,
there are no zero divisors, and a subset of players can either reconstruct the
whole secret or deduce no information at all about s.

Lemma 3.1.8 Let S be a linear secret sharing scheme over a field K. Let
A € T. Then there exists a vector T4 € L9 such that ra-sa = s for all
s € K and s € Share(s) 4.

Proof. By Fact 2.2.22, Share(0)4 C m a™ if and only if m 4 € Share(0) 4.
Clearly, ma ¢ Share(0)4. This implies that Share(0)% \ ma® # 0. Let
r/y € Share(O)j\TnAL # 0, and let r4 = ﬁrh-mA. Then, ra-ma =1
and 74 - z = 0 for all z € Share(0) 4. By Lemma 3.1.7, 74 - sa = s for all
s € K and sa € Share(s) 4. [ |

We say that r4 is a reconstruction vector. Note that there exists a da-
vector T4 such that r4 - sa = s if and only if there exists a d-vector r € L
such that r-s =s, and r; =0 for all ¢ ¢ A.

Lemma 3.1.9 Let Sy = (L, M) be a linear secret sharing scheme over a

ring I with share distribution matric M = (m||M'). Then a vector r is a
reconstruction vector for Sy if and only if P M' = 0 and r"m = 1.
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Proof. If r is a reconstruction vector then by definition r - (Mb) = by for
all b. In particular,

rT( ) =1, and

Mel
——

rT(Me;) =0 for all i > 1.
~—~—

Mt

Hence, r" M’ = 0 and r"m = 1. Conversely, if 7’ M’ = 0 and r"m = 1,
then for all s € L, 7 Share(s) = r”(sm + Share(0)) = sr'm +rTM' = s.
Hence, r is a reconstruction vector. |

Shamir’s secret sharing scheme. Let s € K be the secret to be shared.
Let f(z) = fo + fiz + fox® + --- + fix' be a polynomial of degree ¢ over
K, with |K| > n, t < n. The coefficients f1, fa,..., fi are picked at random
from K, and fy = s. In particular, s = f(0).

Each player P;, 1 < i < n, is given exactly one share. The share given to
player P; is s; = f(i¢). That means that s = (f(1),..., f(n)), and s = Mb,
where

11 12 .. 1t
1 2 22 ... 2t
M = . . . . . ’
1 n n? -+ nt
b:(s fi o ft)T,e:t—i—l,andd:n.

The access structure I' is the set of all subsets of ¢ + 1 or more players,
and the adversary structure A is the set of all subsets of ¢ or fewer players.
By Fact 2.6.5, the reconstruction vector r» = (r1,...,r,) is such that

II % foriec A
T =< JEAjFi . (3.1)
Ofori¢g A

Shamir’s secret sharing scheme is defined over a field K, and this defini-
tion may in general not be extended to a commutative ring L. In the first
example below we will show Shamir’s secret sharing scheme over the field
K = Zr for 5 players, and in the second example we will show that Shamir’s
secret sharing scheme is neither secure nor functional over the ring L. = Z4
for 3 players.
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Example 3.1.10 Let K = Z7, let n = 5, and let t = 3. Let f(x) =
5+ 22 + 422 + 523, The share vector s = (s1, s2, 53, 84, 35)T is given by

1111 s+4
12 4 1 ; s+ 4
s=| 1326 L= et
14 21 - s
1 5 4 6 S

The access structure I' is given by
F = {{17 27 37 4}7 {17 27 37 5}7 {17 27 47 5}7 {17 37 4? 5}7 {27 37 47 5}7 {17 27 37 47 5}}7
and the adversary structure A is given by

A={{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5}, {2, 3,4}, {2, 3,5},
{2,4,5},{3,4,5},{1,2}, {1,3}, {1,4}, {1,5},{2,3}, {2,4}, {2,5}, {3, 4},
{3,5},{4,5}, {1}, {2}, {3}, {4}, {5}, 0}

Now we consider the reconstruction ability of A = {1,2,3,4} € I". By
Formula (3.1), 74 = (4,1,4,6) is a reconstruction vector for A: ra-sa =
(4,1,4,6) - (s +4,s+4,s+2,s) =4s+2+s+4+4s+1+6s = s.

We now consider the reconstruction ability of A = {1,2,3} € A.

111 1 ;
sa=|12 41 j}
1 326 2

f3

The coefficients fi, fo, and f3 are random. The three players may
therefore reconstruct s if and only if there exists a reconstruction vector
rA = (Tl,T’Q,Tg)T € Z:;’ such that 7’1( 1111 )+r2( 1 2 41 )+
r3(1 3 26)=(100 0).

Example 3.1.11 Let L = Z4, let n =3, and let ¢t = 1. Let f(z) = s + 3x.
The share vector s = (sq,52,53)7 is given by

11 s+ 3
s=|1 2 (;)- 542
1 3 s+1

The access structure I' is given by I' = {{1,2},{1,3},{2,3},{1,2,3}}, and
the adversary structure A is given by A = {{1},{2}, {3}, 0}.

Now we consider the reconstruction ability of A = {1,3} € . By For-
mula (3.1), the vector (3, 3) should be a reconstruction vector for A. Over
Z4, however, 2 is not invertible. The two players may reconstruct s if and
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only if there exists a reconstruction vector 74 = (r1,73)7 € Z3 such that
71 ( 11 ) +7“3( 1 3 ) = ( 1 0 ) Such an 74, however, does not exist.

We now consider the reconstruction ability of A = {2} € A. sy =
s 4+ 2f; for a random coefficient f;. However, over Z4 2 is a zero divisor:
2-2 = 0mod 4. Multiplying by 2, 2s4 = 2s. If s = 1 or s = 3, then
2s4 = 2. Player P, may therefore deduce that 2s = 2, which is equivalent
tos € {1,3}. If s =0 or s = 2, then 2s4 = 0. In this case player P, may
deduce that 2s = 0, and therefore that s € {0, 2}.

In a standard secret sharing scheme over a ring I, the secret s must be an
element of L. Black box secret sharing schemes are secret sharing schemes
over the ring Z. The secret s, however, may be an element of an arbitrary
Abelian group G. Note that by Fact 2.2.6, any finite Abelian group is a
Z-module.

Let I' be a monotone access structure, and let M € Z%*¢ be a d x e
integer matrix. Let G be a finite Abelian group, let s € G be a secret, and
let g ={g1,...,9.} € G° be arandom e-vector with g; = s. Define s = Mg.

Definition 3.1.12 The tuple B = (M,T) is called a black-box secret sharing
scheme for I' if the following holds:

FuncTioNALITY. For any qualified subset A € T', there exists a recon-
struction vector r4 € Z% such that for any finite Abelian group G and for
any secret s € G, 74 -Sa =5

SECURITY. For any unqualified subset A ¢ T' and for any secrets s,
s' € G, sa and s’, are identically distributed.

The additive secret sharing scheme, the CNF-based secret sharing scheme,
and the DNF-based secret sharing scheme are three examples of black-box
secret sharing schemes. Shamir’s secret sharing scheme, however, is not a
black-box secret sharing scheme.

Example 3.1.13 Consider Shamir’s secret sharing scheme with n = 3 and

t = 1. Then
11 1 £
ran=(15) (o)=(4)ez

3.2 Characterisation through Monotone Span Pro-
grams

By Examples 3.1.10 and 3.1.11, for Shamir’s secret sharing scheme to be
functional, (1,0, ...,0) must be a linear combination of the rows of M4 for
every qualified subset A € I", while for Shamir’s secret sharing scheme to be
secure, no scalar multiple of (1,0, ...,0) should be a linear combination of
the rows of M4 for any unqualified subset A € A.
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More formally, Shamir’s secret sharing scheme is functional if and only if
forany A €T, (1,0,...,0)T € Im M};, and if Shamir’s secret sharing scheme
is secure, then for any A € A, («,0,...,0)T ¢ Im M7 for all « € L'\ {0}.

In Lemma 3.2.1 below, we prove that if the first column of M4 is a linear
combination of the e — 1 other columns of M4, then no linear combination
of the rows of M4 is a scalar multiple of (1,0,...,0).

Lemma 3.2.1 If there erists k = (k1,...,ke)] € Ker My with ky = 1,
then for all scalars o € L'\ {0}, (,0,...,0)T ¢ Im M7.

Proof. If there exists & = (k1,...,ke)! € Ker My with k1 = 1, then
for all a € L\ {0}, («,0,...,0)T - K = ak; # 0. This is equivalent to
(,0,...,0)T ¢ (Ker M4)* for any o € L\ {0}. By Fact 2.3.14, Im M} C
(Ker M4)t, and thus (,0,...,0)7 ¢ Im M% for any a € L\ {0}. [ |

We may generalise this in terms of monotone span programs (MSPs).
MSPs were introduced by M. Karchmer and A. Widgerson in 1993 [16].
Karchmer and Widgerson defined MSPs over finite fields. We will generalise
this definition to commutative rings.

As in section 3.1, let M € L%*¢ be a matrix with d rows and e columns.

A labelling function is a surjective function ¢ : {1,...,d} — {1,...,n}.
We will say that row j of M is labelled by i if ¢(j) = i. Each row of M is
labelled by an integer ¢ with 1 < 4 < n for some n such that each ¢ labels
at least one row. Let d; be the number of rows of M labelled by i. De-
note by M; € L%*¢ the matrix consisting of those d; rows. Similarly, for
0 #AcC{l,...,n}, da denotes the number of rows of M labelled by some
i€ A. Let My € L44%€ be the matrix consisting of those d rows.

Let a € ¢\ {0} be the fixed non-zero target vector a = (1,0,...,0).
Sometimes the target vector will be 1 = (1,1,...,1).

Definition 3.2.2 A monotone span program (MSP) over a ring L is a tuple
M — (L5M7a7¢)'

We define the size of M to be the number of rows of M.

Definition 3.2.3 The MSP M = (L, M, a, ) is said to compute the mono-
tone access structure T if for all ) # A C {1,...,n}, the following holds:

- AEFéaGImMg,and
-A¢T =3Ik = (k1,...,ke)T € Ker My with sy = 1.

Lemma 3.2.4 Let K be a field. Then there exists k = (/@1,...,/16)T €
Ker My with k1 = 1 if and only if a ¢ Im M.
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Proof. By Fact 2.3.15, a ¢ Im M7 if and only if a ¢ (Ker M) L. Hence,
if a ¢ Im Mg, then there exists z € Ker M4 such that a - z # 0, which is
equivalent to z; # 0. Define k = 21 12 € Ker M4. Conversely, if there exists
k = (K1,...,ke)" € Ker My with k1 = 1, then @ - z # 0. Equivalently,
a ¢ (Ker My)T =Im M% by Fact 2.3.15. [ |

Definition 3.2.5 We say that the MSP M = (K, M, a,v) computes the
monotone access structure T if for all ) # A C {1,...,n},

AcTl e acImM}

If L is a ring, then a ¢ Im Mg does not imply the existence of such a k.

Example 3.2.6 Let M = ( 2 0 ) € 7'*2. Then, Im M7 = {2a : a € Z},
and Ker M = {0}. Thus, a ¢ Im M7, and there does not exist a x € Ker M
such that k1 = 1.

A monotone access structure I" may be defined in terms of a monotone
Boolean function. For example, if I' = {{1, 2}, {1, 3},{2,3},{1,2,3}}, then
the Boolean function f(Pl,PQ,Pg) = (Pl AN Pg) V (Pl AN Pg) V (P2 AN Pg) has
access structure T.

Definition 3.2.7 The MSP M is said to compute the monotone Boolean
function f if it computes the monotone access structure I' = {A C {1,...,n} :

F(A) = 1}.

Fact 3.2.8 Every monotone Boolean function f : {0,1}" — {0,1} can be
computed by an MSP [16].

As an example, consider a 5 x 5 MSP over Zs with n = 3.

Example 3.2.9 Let K=7Z5,d=05,e=5,n=3, and let

0 01 01 1
10100 3
M=]1001200 3.
000 01 2
01 011 1

Let the access structure computed by the MSP be I'. For A = {2,3}, the
corresponding matrix My is

1 010
My=1 001 0

0
0
0 0001

The sum of row 1 and row 2 of M4 is equal to a: A €T
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Let M = (L, M, a,v) be an MSP computing the monotone access struc-
ture I'yq. Let 7xq be the set of maximal unqualified subsets of " 4.

For each T € T),, there exists by definition 3.2.3 a dp-vector wr such
that Mprwr = 0 and a - wr = 1. Let ¢ = Mwp, and let M be the
concatenation of those vectors ep, T € 7. M has the same number of rows
as M, |T| columns, and the same labelling as M.

Definition 3.2.10 We say that M = (M,]L, 1,v) is a canonical MSP.

We denote the monotone access structure computed by M by I' .

Fact 3.2.11 I' ;) = ' m1.

As an example, consider again the 5 x 5 MSP over Zo with n = 3 from
Example 3.2.9.

Example 3.2.12 In Example 3.2.9, T'yy = {{3},{1,3},{2,3},{1,2,3}}.
Hence, T' = {1, 2} is the only maximal unqualified subset. The correspond-
ing matrix Mr is

My =

o O O

01 01
00 01
1 011

Clearly, wr = (1,0,0,0,0)" € Ker M with @ - wr = 1, and hence

00101 1 0
101 00 0 1
cr=|1 0 0 1 0 O 0]l=1]120
00 0 01 0 0
01 011 0 0
Hence,

0\ 1

11 3

M=]01]3

0] 2

0/ 1

Note that ', = {{3},{1,3},{2,3},{1,2,3}} = T\

We will now prove that LSSSs and MSPs over a finite field are in fact
equivalent. That means that for each LSSS, we may construct a correspond-
ing MSP, and for each MSP, we may construct a corresponding LSSS. The
second part of the proof is due to [16].

Theorem 3.2.13 Linear secret sharing schemes and monotone span pro-
grams over a finite field K are in one-to-one correspondence.
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Proof. Let I' be the access structure. First we show that we may con-
struct an MSP for a given LSSS.

Let the LSSS be defined by s = Mb, M € K¢ with M = (m||/M’),
b € K¢ with b = (s][b/). For 1 < j <d, 1 <i < n, we label row j of M by
1 if s; is given to player F;. Denote the corresponding labelling function by
1. Define an MSP M by the triple (K, M, a,v). Below we prove that M
computes I'.

Firstly, a € Im MZ; if and only if there exists a dz-vector r € K% such
that @ = M%r. The latter implies that r - s4 = r- Mab = (Mir)Tb =
a - b = s, and hence, r is a reconstruction vector for A. This means that
Ael.

Conversely, if A € T" then there must exist a reconstruction vector r for
A. Hence, s =184 =1 -Mub = (Mir)-b=(m-r)s+ (MTr) ¥,
implying that m - = 1 and M1’4Tr = 0. This is equivalent to a = Mgr,
which means that a € Im MZ;.

Next, we show how to construct an LSSS for a given MSP.

Pick a random vector b € K¢ such that by = s. Let s; = M;b be the
vector given to player P;. This means that share s; is given to player P; if
row j of M is labelled by i. Thus, s = Mb.

We now prove that the LSSS is functional. Forany A € {1,...,n}, A €T
if and only if @ € Im MZ. This implies that there exists a d-vector r € K%
such that @ = M%r. Thus, r-sa =17 (Mab) = (Mir)I’b=a-b=s, and
thus r is a reconstruction vector for A.

Conversely, A ¢ T if and only if @ ¢ Im M%, which is equivalent to
a ¢ (Ker M4)*. This means that there exists an e-vector z € K€ such that
Mjz=0and z; =a-z # 0. Wlog 2; = 1. For an arbitrary s’ € K, define
s’ =M(b+ z(s' — s)). Then s’ is a valid sharing of s’, and s4 = s’,. This
proves that the LSSS is secure. |

Similarly, for each MSP over a commutative ring IL, there is a corre-
sponding LSSS. This lemma is due to [11].

Lemma 3.2.14 For each monotone span program over a commutative ring
L, there is a corresponding linear secret sharing scheme.

Proof. Let I' be a monotone access structure. Let an MSP M be defined
by the tuple (L, M, a,v), M € L€, Let s € L be the secret to be shared.
Define an LSSS as follows:

Pick a random vector b’ € L¢~! and let b = (s||b’). Let s; = M;b be the
vector given to player P;. This means that share s; is given to player P; if
row j of M is labelled by i. Thus, s = Mb.

Now, if A € T", then a € Im M}f. This implies that there exists a d4-
vector r € L4 such that a = M{r. Thus, r-sa = r-(Mab) = (Mir)Tb =
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a - b = s, and thus r is a reconstruction vector for A. This proves that the
LSSS is functional.

We now prove that the LSSS is secure. For any A C {1,...,n}, A¢T
implies that there exists an e-vector K € IL.° such that M4k = 0 and k1 = 1.
For an arbitrary s’ € L, define s’ = M(b+ k(s’ — s)). Then s’ is a valid
sharing of s/, and s 4 = s’;. This proves that the LSSS is secure. |

In particular, an LSSS defined by s = Mb is functional if and only if
a € Im Mz for all qualified subsets A. It is secure over a field if for all
unqualified subsets A, a ¢ Im M}f, and it is secure over a ring if for all
unqualified subsets A, there exists k € Ker M4 with x; = 1. It is secure
only if for all scalars a, aa ¢ Im M % for all unqualified subsets A.

MSPs over the ring Z are equivalent to black-box secret sharing schemes
[10].

Definition 3.2.15 An MSP M = (Z, M, a, ) is said to be an integer span
program.

Theorem 3.2.16 Let I' be a monotone access structure. Then B = (M,T")
is a black-boz secret sharing scheme for T' if and only if M = (Z, M, a) is
an integer span program for I'.

Proof. First, we prove that if M = (Z,M,a) is an ISP for T', then
B = (M,T) is a black-box secret sharing scheme for T'.

Let G be an arbitrary finite Abelian group, let s € G, and let g =
(s,92,...,ge) € G for arbitrary ga, ..., g € G. Define s = Mg.

FUNCTIONALITY. If A € T, then by definition 3.2.2, @ € Im M7. Thus,
there exists a vector r4 € Z% such that MgrA = a. Then, ra-sp =
ra (Mag) = (Mjra) g=a-g=s.

SECURITY. If A ¢ T', then by definition 3.2.2, there exists a vector k €
Ker M 4 with k1 = 1. For an arbitrary s’ € G, define g’ = g+ (s’ —s)k € G°,
and define s’ = Mg’ € G%. Then s4 = s’y. Thus, s4 and s, are identically
distributed.

Conversely, we prove that if B = (M,T") is a black-box secret sharing
scheme for I', then M = (Z, M, a) is an ISP for I.

Let G = Z, for an arbitrary prime p, let s1 = 1,59 = 0,...,5. =
0, and let G = (g1]|gz|| - ||ge) € G**¢ with g1 = (51,0,...,0)T,ga =
(s2,1,...,0)T,...,ge = (5¢,0,...,1)T. Note that G is the e x e identity
matrix. Define s; = Mgi,...,Se = Mge, and define S = (s1]|--|[se) =
MG € G¥e,

If A €T, then by definition 3.1.12 there exists a reconstruction vector
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ra € Z% such that

1 51 TA:S1A
0 S9 TA-S2A

_ _ _ _ T T _ T T
0 Se TA" SeA

= (TATMA)T = MgrA mod p.

This holds for any prime p. Thus, a = M;{TA, which implies that a €
Im M7,

We will now show that if A ¢ I', then there exists k € Ker M4 with
k1 = 1. Consider the system of linear equations Nqax = y, where y is the
first column of M4, and N4 € 74%(e=1) is the concatenation of the remaining
e — 1 columns. Note that « is a solution if and only if

1
MA( _m>—y—NA:c_0.

Let G = Z,, for an arbitrary non-zero integer m. Let s € G, and let s’ =
s — 1. Let the vector g € G° be such that g; = s. Then by definition 3.1.12,
there exists a vector g’ € G° with ¢i = s’ such that Mag’ = sa = Mag.
Hence, M4(g — g’) =0, and (g — ¢’')1 = 1. Equivalently,

—(g—9)
Ny = y mod m.
—(9—9)e

This holds for any non-zero integer m. Thus, Nqx = y is solvable over
Zy, for all non-zero integers m, and thus, by Fact 2.3.19, it is solvable over
Z. Let x be a solution. Define

()

then Mak =0, and k1 = 1. |

3.3 Characterisation through Projection

Notation 3.3.1 Let § be a linear secret sharing scheme. We denote the
set of reconstruction vectors of S by R(S).

Clearly, every linear secret sharing scheme has a unique set of reconstruc-
tion vectors. Lemma 3.3.2 below gives the precise number of reconstruction
vectors for an LSSS defined by s = Mb.
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Lemma 3.3.2 Let Sy be an LSSS with share distribution matriz M € L%¢
over a ring L. Then |R(Sy)| = [L|4~¢.

Proof. Note that a vector » € L% is a reconstruction vector for Sy if
and only if 7T M = ( 10 --- 0 ) Thus, 7 is a reconstruction vector for
Syr if and only if 7 is a solution of the system of linear equations

r1mi1 + remeor + - +rgmgy = 1
rimig +romog + - +rgmga =0

T1M1e + T2Moe + + -+ + rgMge = 0

Since the e columns of M are linearly independent, rank M = e, and thus
M has e linearly independent rows. Wlog the first e rows of M are linearly
independent. Then for each e + 1 < i < d, there exist scalars p;1, ..., e
such that M; = puj My + - - - + pieM., where M; denotes the jth row of M.
Thus, the system of linear equations becomes

(11 4 feg11Teq1 + -+ parma)mar + -+ (Te + fleg1eTesr1 + - -+ faeTa)Mer = 1
(r1 + fet11Tet1 + - -+ parra)miz + -+ + (re + flet1eTet1 + -+ + fideTa)Me2 = 0

(11 4 feg11Teq1 + -+ parTa)Mie + - + (Te + feg1eTesr1 + -+ HdeTd)Mee = 0

Equivalently,

mir o M 71+ Het11Tet1 + o+ + Hd1Tq 1

mo1 o Mge 72+ fet12Teq1 + -+ -+ fd2Td 0

Me1 -+ Mee Te + fetleTet+1 T - + UdeTd 0

N

Thus, ( 71 + fet11Tet1 + -+ + Ha1Td - Te+ fetieleqt + - + fdeTa ) =
(N71)1. The coefficients r¢y1,...,rq are free. Once those are fixed, the co-
efficients 71, ..., 7. are uniquely determined. There are thus |L|¢~¢ solutions
r e L4, |

Shamir’s secret sharing scheme. Recall that by Formula (3.1), a re-
construction vector for Shamir’s secret sharing scheme for a qualified subset
of players A is given by

II %forieA

r; = JEAjFi
Ofori¢g A
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Note that since each subset of players A with |A| > ¢ is a qualified subset,
Shamir’s secret sharing scheme has precisely (tﬁl) + (t12) +o 4 (n’il) +1
qualified subsets. However, by Lemma 3.3.2, Shamir’s secret sharing scheme
has K[~ > (")) + (1) + -+ + (,",) + 1 reconstruction vectors.
In Example 3.3.3, we compute the reconstruction vectors of a generalised
Shamir’s secret sharing scheme with n = 3 and ¢ = 1. Note that over Z,,

p > 5, there are precisely p > (g) + 1 = 4 reconstruction vectors.

Example 3.3.3 Let

1 a1
V= 1 a9
1 a3

for a; # o for i # j. A vector r is a reconstruction vector for Sy if and
only if rTV = ( 10 ) Equivalently, 7 is a solution of the system of linear
equations
{ ri+re+ry=1
riaq + raog + ryaz =0

Let r3 = k € Zy. Then ry = %, and r3 = %

If £k = O, then ')"T = ( —1_ 22 ) ) Note that 7’{2 = (V1T21)17

ao—aq ao—aq
where ( V1T21)1 denotes the first row of the inverse of the Vandermonde matrix

1l «o
V1,2=<1 1)-
(0%)

If k= -2 then r’ = ( —2- 0 = )7 and 7{3 = (Vl,_sl)L

a1 —Q3 a1 —ag a1 —a3 1
If k= a;f‘g@, then rT = ( 0 ﬁ a;f‘iQ ), and r%jg = (Va3 )1-
— —oja T _ Q203 a1o3 —Q1Q
Itk = (02—a3)1(a§—a1)’thenr - ( (az—a1)(az—a1)  (az—az)(az—a1)  (az—az)(az—a1) )

Note that 7 = (V1T21’3)1, where (V1T21’3)1 denotes the first row of the inverse
of the Vandermonde matrix

1 g of

2

Vipga=| 1 az o3
1 a3 a%

The four reconstruction vectors above are the reconstruction vectors
from Formula (3.1). Let k = 1. For every field Z,, p > 5, a fifth recon-

struction vector is given by r1 = ( a;‘f’al a%‘fyl 1 )

Lemma 3.3.4 Let Sy = (M,K) and Sy = (N,K) be two linear secret
sharing schemes over the field K with share distribution matrices M and
N € K%, Then R(Sy) = R(Sy) if and only if there exists an invertible
matriz C € K<€ with C; = ( 10 --- 0 ) such that N = MC.
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Proof. First we prove that if R(Sy;) = R(Sy) then there exists an
invertible matrix C € K¢*¢ with C; = ( 10 --- 0 ) such that N = MC.
By Lemma 3.3.2, |R(Sy)| = |K|¢¢. By Lemma 3.3.6 below, R(Sy)* =
Shares,, (0). Thus, the e — 1 last columns of M M?,..., M¢ are a basis
of R(Sy)*. If R(Sy) = R(Sn), then for all r € R(Syr), T M! =1 =
rTN1, and " M? = 0 = vTN? for all 2 < i < e. This implies that N! —
MY, N2, ... ,N¢ € R(Sy)*. Thus, there exist 7a,...,%,72i,---,Ye € K
such that N' = M + voM? + -+ 4+ ~.M¢, and N* = y9; M? + - 4 ~o; M€
for 2 <4 < e. Equivalently,

Y2 Y22 V2
N=M ) . .
Ye VYe2  Yee
c

By Lemma 3.3.7 below, C' is invertible.

Conversely, if there exists an invertible matrix C € K®*¢ with Cy
(1 0 --- 0) such that N = MC, then for any r € R(Sm), r' N
’I"TMC:(I 0o --- O)C:C’1:(1 0o --- 0),andhence,r
R(Sn). By Lemma 3.3.2, |R(Sxr)| = |R(Sn)|. This proves that R(Syr)
R(SN).

|l

Note that if M = (m/||M’) and N = (n||N’), then n = m + v M'" +
<o yeM'® 1t and N’ = M'C’, where C' is the invertible matrix

Y22 Y2

Ye2  Yee

Corollary 3.3.5 Let Sy = (M,K) and Sy = (N,K) be two linear secret
sharing schemes over the field K with share distribution matrices M and

N € K™, Then R(Sm) = R(Sn) if and only if Sy = S

By Corollary 3.3.5 above, a set of reconstruction vectors corresponds to
a unique linear secret sharing scheme.

Lemma 3.3.6 Let Syr be a linear secret sharing scheme over a ring K with
share distribution matriv M € K¢, Then R(Sy)* = Shares,, (0).

Proof. Clearly, Shares,,(0) € R(Sy)t. To prove that R(Sy)*
Sharegs,, (0), suppose for a contradiction that there exists z € R(Sy)
Shares,, (0). Then the columns of the matrix (z||M) € K™ (+1) are e + 1
linearly independent: if ¢ M +co M2 +- - A ceM®é+cor1z = 0, where M de-
notes the ith column of M, then for all » € R(Syr), 0 = ciyr? M +corT M2+

C
=\
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ot cerT M +cep1r7T 2 = 1. This implies that ¢; = 0, which in turn implies,
by the linear independence of z, M?2,..., M€, that ¢y = -+ = cey1 = 0. The
matrix (z||M) thus has e + 1 linearly independent rows. Every r € R(Syy)
is a solution of the system of linear equations

r1mi1 + remeor + - +rgmgp =1
rimig + remag + - + rgmge =0

T1M1e + ToMoe + + -+ + rgMmge = 0
r1z1+reze+ -+ 1rg2g =0

which has precisely [K¢(¢*1)| solutions. This contradicts the fact that
IR(Sy)| = |K|97¢. Thus, R(Sp)* C Shares,, (0). [

Lemma 3.3.7 Let M, N € L€ be two matrices such that rank M = e,
and let C € L€ be a matrixz such that N = MC. If rank N = e then the
matriz C is invertible.

Proof. If C' is not invertible, then there exist scalars ci,...,c. € L such
that ¢;C! +--- 4 ¢,C® = 0, and at least for one i, ¢; # 0. Multiplying by M
yields 0 = e MC 4+ -+ 4+ ¢.MC® = ¢;N' + - - - + ¢.N€. Hence, the columns
of N are linearly dependent. |

Lemma 3.3.8 Let M, N € K%€ be two matrices such that rank M = e, and
let C € K€*€ be a matriz such that N = MC'. If the matriz C' is invertible
then rank N = e.

Proof. If 0 = ¢iN' + --- 4+ ¢cN® = M(c1C' + -+ + ¢.C®) for scalars
c1,...,ce € K, then, by the rank-nullity theorem, ¢;C! + - -- 4 c.C¢ = 0. If
C' is invertible, then ¢; = --- = ¢, = 0, and hence, the columns of N are
linearly independent. |

For threshold linear secret sharing schemes, only subsets of reconstruc-
tion vectors rather than the complete sets of reconstruction vectors need to
coincide for two threshold LSSSs to coincide.

Lemma 3.3.9 Let A be a minimal qualified subset, and let r € L4 be a
reconstruction vector for A. Then the elements r1,...,7rq, are invertible.

Proof. For a contradiction, suppose wlog that 74, is not invertible. Then,
by Fact 2.1.19, r4, is a zero divisor. Let z € L'\ 0 be such that rq4,z = 0.
Then, zs = z(r151+ 4+ 7Td,—15d4—1+Tds5d,) = 2(r181+- - +Td,-15d,—1)-
Hence, players Pi,...,FPy,_1 are able to deduce partial information about
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the secret s together. This contradicts the security of the LSSS. |

Lemma 3.3.10 Let Sy and Sy be two (t+1)-out-of-n threshold linear secret
sharing schemes over the field K for the threshold access structure I'y, =
{4 c {1,...,n} : |A| > t}. Let R = {r1,...,"n—t} C R(S1) N R(S2)
be such that for each i, t +1 < i < n there exists 1 € R such that r is a
reconstruction vector for some A of size i. Then & = So.

Proof. Let R; be the concatenation of all reconstruction vectors of
S1, and let Ry be the concatenation of all reconstruction vectors of Ss.
Note that by Lemmas 3.3.6 and 5.2.1, dimKer R = dimKer R} = t¢.
By the rank-nullity theorem, rank R = rank Rl = n —t. Wlog, r1 =
T{1,.t+1} > Tn—t = T{1,..n}. Let R = (r1]|---||[rp—). For a contra-
diction, suppose that rank RY < n —t. Then there exist ¢i,...,¢,—s € K
such that ¢; # 0 for some i such that ¢, 7. o3 = c1rqu,. e413 + - +
Cn—t—1T{1,...,n—1}- Lhis implies that c17(; 1, = 0, which by Lemma 3.3.9
contradicts r(y . n}, 7 0. Hence, rank RT = n—t, and hence, R(S;) =R =
R(S2) By Corollary 3.3.5, S; = Sa. [

Not every set of vectors, however, is a set of reconstruction vectors for
some linear secret sharing scheme over a given field K.

Lemma 3.3.11 Let R = {r1,...,7x} C K¢ be a set of vectors. Let R =
(r1]]...||rk). Then R is a set of reconstruction vectors if and only if

-1eImRT, and
- Je € Z such that k = |K|?¢ and dim Ker RT = e — 1.

Proof. If R is a set of reconstruction vectors then there exists a matrix
M € K% for some e € Z, such that R = R(Sy). By Lemma 3.3.2,
k =R(Sy) = |K|?~¢, and by Lemma 3.3.6, dim Ker RT = dim Sharegs,, (0) =
e — 1. For all r € R(Sy), v’ M*' = 1, and hence, RT M' = 1.

Conversely, if there exists e € Z, such that dimKer R = e — 1, and
1 € Im RT, let m € K% be such that RTm = 1, and let mi,...,m._, be

’ e—1
a basis of Ker RT. Define M = (m|lm/||---|/m/_,). Then, for all 7 € R,
rTM = ( 10 --- 0 ) Hence, R is a set of reconstruction vectors for
Sy |

Example 3.3.12 Let R = {ej1,e2,e3,e4}, and let K = Z5. Clearly, 4 #
59=¢ for all d,e € Z,..
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3.3.1 Algorithm: isRec(r,M)

Let Sy = (L, M) be a linear secret sharing scheme over a ring I with share
distribution matrix M. In this subsection, we present an algorithm to check
whether a vector r is a reconstruction vector for Sp4.

Naively, we may do the following;:

Algorithm 1 isRec(r,M)
for all b do
if r- (Mb) # b; then
return false
end if
end for
return true

This algorithm is highly inefficient since the number of computations
increases exponentially with the number of columns of M. Lemma 3.1.9 al-
lows for a more efficient algorithm. The following algorithm is more efficient
since the number of computations increases only linearly with the number
of columns of M.

Algorithm 2 isRec(r,M)
if rTM = ( 1 0 ---0 ) then
return true
end if

return false

Note that for both algorithms the number of computations increases
linearly with the size of S.

3.4 A Partial Order on Linear Secret Sharing Schemes

In this section, we will define a partial order on linear secret sharing schemes
for a fixed access structure I'. This partial order was first defined by R.
Cramer, I. Damgard, and Y. Ishai in [7].

Definition 3.4.1 Let S,S8’ be two secret sharing schemes over L. S is
said to be locally convertible to S’ if there exist local conversion functions
g1, ---, gn such that if (s1,...,8y,) is a valid sharing of a secret s in S, then
(91(81),.-.,9n(8n)) is a valid sharing of the same secret s in S’. We define
9(81,..-,8n) = (91(81),---,9n(Sn)). The function g is said to be a share
conversion function.

Notation 3.4.2 Let 8,8’ be two secret sharing schemes over L. If S is
locally convertible to S’, we denote this by S = S'.
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Notation 3.4.3 Let S,8’ be two secret sharing schemes over L. If S is
locally convertible to 8" with share conversion function g such that for any
secret s € L, g(Shareg(s)) = Shareg/(s), we denote this by S > S'.

Notation 3.4.4 Let S,8" be two secret sharing schemes over L. If there
exists a permutation 7w : {1,...,n} — {1,...,n} such that for any secret
s € L and any valid sharing (s1,...,8n) of s in'S, (8x(1),--->8n(n)) i5 @
valid sharing of s in S', we denote this by S = S'.

La8s,
La8a, Lsss; o~ L8Ss, o~  L88S; LESE,
2 2 N U
LSS8s = LS8s, o LSS5 1,858,
= / Voo
LSSS“X LSSSu

1LE88,

Figure 3.4: Partial ordering of LSSSs

In the ordering defined by Cramer, Damgard, and Ishai, an LSSS is said
to be maximal if it is locally convertible to any other LSSS, and an LSSS is
said to be minimal if any other LSSS is locally convertible to this LSSS. We
will prove that the CNF-based scheme (or replicated secret sharing scheme)
is maximal, and that the DNF-based scheme is minimal.

CMNF-bhased scheme all other LEE5s
all other LEESs DMNF-based scheme
Figure 3.5: maximal LSSS Figure 3.6: minimal LSSS

39



In the following, we will denote by S the LSSS corresponding to the
MSP M = (M, L, a), and we will denote by S, the LSSS corresponding to
the canonical MSP M = (M, L, 1). Let er and wr be as defined in section
3.2.

Lemma 3.4.5 LetI be a monotone access structure. The CNF-based scheme
Rr is locally convertible to the LSSS S .

Proof. Let T be the set of maximal unqualified subsets of I', let s € L
be a secret, and let s = ZTGT r7 be a Rp-sharing of s. Denote the vector
of Rp-shares by r = (r7)re7, and denote by s; = (r7)ry the vector of
Rr-shares given to player P;. We denote by s the vector (s1,...,8n).

For 1 <i < n, we define the ith conversion function by

gi(si) = rr-ecm,

T%i

and the share conversion function g by g(s) = (g1(s1),--.,9n(sn)). Then,

Mr=> rr-er=>Y rp- (Mwr)=rp- () Muwn,...,» Mywr,)

TeT TeT T#1 T#n
= (Z’I“T CTy, ..y Z’I“T : CTn) = g(s).
T#1 T#n
Thus, g(s) is a valid S -sharing of s. |

Lemma 3.4.6 Let I be a monotone access structure. The LSSS SM 18
locally convertible to the LSSS Sp.

Proof. Let s € L be a secret, and let s = Mr be an S y-sharing of s.
Let b = Wr. Note that Mr = MWr = Mb, and that a-b = a - (Wr) =
(WTa)-r =1-r =s. Thus, s is a valid Sy-sharing of s. |

Theorem 3.4.7 Let I' be a monotone access structure. The CNF-based
scheme Rr is locally convertible to any LSSS for T'.

Proof. Let § be an LSSS. By Theorem 3.2.13, § = S for some MSP M.
Let M be the canonical MSP. By Lemma 3.4.5, Rr is locally convertable to
S > and by Lemma 3.4.6, S is locally convertable to Sy = S. |

Theorem 3.4.8 Let I' be a monotone access structure. Any LSSS for T is
locally convertible to the DNF-based scheme for I.
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Proof. Let & be an LSSS. Let s € L be a secret, and let s be an S-
sharing of s. Let Q be the set of all minimal qualified subsets of I'. For
Q € Q, let rq be a reconstruction vector for (). Each player P; computes
rQj = rQ; - 8Q; for each € Q such that j € . Then, for each Q € Q,

ZjEQTQJ' =7rQ-8SQ =S:. | |

By Theorems 3.4.7 and 3.4.8, we may now define a partial ordering on
linear secret sharing schemes. In this ordering, the DNF-based secret shar-
ing scheme is minimal by Theorem 3.4.8, and the replicated secret sharing
scheme, or CNF-based secret sharing scheme, is maximal by Theorem 3.4.7.
Both theorems are due to [7].

As an example, we will prove directly that the CNF-based scheme (or
replicated secret sharing scheme) is locally convertible to Shamir’s secret
sharing scheme. The proof is due to [7].

Proposition 3.4.9 Let I'y,, be a threshold access structure. The replicated
secret sharing scheme Rr, ,, is locally convertible to Shamir’s secret sharing
scheme.

Proof. Let s € K be a secret. The maximal unqualified subsets of
I't , are precisely the unqualified subsets of cardinality ¢. This means that
for each maximal unqualified subset A, a subset of players of cardinality
|A| = n —|A| = n—tis given share 74, namely the players in A. Therefore,

s = Z TA,

AC{1,...,n}:|Al=n—t

where 74 has been given to all players in A.
For each A C {1,...,n} of cardinality n — ¢, we define a polynomial f4
of degree t by f4(0) =1, and fa(i) =0 for all i ¢ A. Further, we define the

polynomial f by
f= > ra- fa.
AC{1,...,n}:|Al=n—t
Each player P;, 1 <1 < n, computes

8; = Z ra - fa(i).

AC{1,...,n}:|Al=n—ticA

Then, f(0) = s, s; = f(i), and f is of degree t. [ |
Not all LSSSs for the same monotone access structure are locally con-
vertible to each other. In particular, we prove that Shamir’s secret sharing

scheme is generally not locally convertible to the replicated secret sharing
scheme [7].
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Proposition 3.4.10 LetI'; 3 be the threshold access structure {{1,2}, {1, 3},
{2,3}, {1,2,3}}. Shamir’s secret sharing scheme is not locally convertible
to the replicated secret sharing scheme Rr, ;.

&

lm/ \1} lm/ \2} lm/ \1(3}
Pz P3 Pl P3 Pl PZ

Figure 3.7: CNF-based scheme for the threshold access structure I'y 3

Proof. Let (s1,$2,53) be a valid tuple of Shamir shares. For any share
conversion function g, g(s1,s2,s3) = ((91(s1)1,91(s1)2), (92(s2)1,92(52)2),
(93(s3)1,93(53)2)) is a valid tuple of Rr, ;-shares only if g1(s1)1 = g3(s1)2,
91(s1)2 = g2(s2)2, and ga(s2)1 = g3(s3)1-

We now prove by contradiction that any such g must be constant. If
g is not constant, then one of the g¢; is not constant. Wlog g; is not
constant, and there exist a,b € K such that gi(a) # ¢1(b). Again wlog,
gi1(a)1 # g1(b);. By Lemma 3.4.11 below, there exists a Shamir share sy
such that (a,se2,a) is a valid tuple of Shamir shares, and there exists a
Shamir share s such that (b, s}, a) also is a valid tuple of Shamir shares.
Now, g(a,s2,a) = ((g1(a)1,91(a)2), (g2(s2)1, 92(s52)2), (93(a)1, g3(a)2)), and
9(b, 5, @) = ((91()1, 91(8)2), (92(5h)1, 92(55)2), (93(@)1, ga(a)a))- By the above,
g1(a)1 = g3(a)2 = g1(b)1. This contradicts g1(a)1 # g1(b)1.

No share conversion function, however, can be constant. |
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OMF-bazsed scheme

U

Sharnir's secret sharing scheme

%

DIMF-hazed scheme

Figure 3.8: Shamir’s secret sharing scheme in the partial ordering of LSSSs

Lemma 3.4.11 For any a,b € K, there exists sy € K such that (a, s2,b) is
a valid tuple of Shamir shares.

Proof. A tuple (s1, s2,3) is a valid tuple of Shamir shares if and only if
there exist s, by € K such that

s1 =8+ by
S9 = s+ 2by
83=8+3l)2

Hence, (a, s2,b) is a valid tuple of Shamir shares only if there exist s,bs € K

such that
s+ba=a
s+3by=0b "

The unique solution to this system of linear equations is s = %(3& —b), and
by = 2(b— a). Define sy = s + 2by = $(a +b). [ |
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Chapter 4

Multiplicative Linear Secret
Sharing Schemes

Secret sharing is an important concept in secure multi-party computation.
Multi-party computation was first introduced by A. C. Yao in 1982 [18] and
later extended to secret sharing by D. Chaum, C. Crépeau, and 1. Damgard
in 1988 [6].

Consider two secrets s and ¢ which have been split into two sets of shares
{s1,82,...,sn} and {t1,1o,...,t,}. Each player has been given one or more
shares of each secret. Secure multi-party computation allows the players to
do computations on s and ¢ by doing computations on their shares.

In any linear secret sharing scheme, n shares of the sum of s and ¢ may
be computed by adding shares s; and ¢; for each ¢ = 1,...,n. These n shares
may then be recombined into the sum of s and ¢.

In this chapter, we will define multiplicative linear secret sharing schemes.
In a multiplicative LSSS, n shares of the product of s and ¢ may be com-
puted by computing the product of the shares s; and ¢; foreachi =1, ..., n.
These n shares may then be recombined into the product of s and t¢.

Multiplication and addition are necessary and sufficient for secure multi-
party computation: for any a,b € {0,1},

aNb=a-b,avVb=a+b—a-b,and ~a=1-a.

In section 4.1, we will formally define multiplicative linear secret sharing
schemes. Shamir’s secret sharing scheme will be presented as an example
of a multiplicative LSSS. In sections 4.2 and 4.3, we will, as in sections 3.2
and 3.3, present two characterisations of multiplicative linear secret sharing
schemes.
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4.1 Functional Definition

Let s, t € L be secrets that have been split into sets of shares s, t, respec-
tively, by a linear secret sharing scheme. Let A be the adversary structure.

Definition 4.1.1 An LSSS is said to be pointwise multiplicative if there
exists a fixed d-vector r such that r - (s xt) = st.

Definition 4.1.2 We say that a matrix D = (d;;) € L% is a local multi-
plicativity matriz if d;; # 0 only if both share s; and share s; are given to the
same player Py, k € {1,...,n}. For 1 < k < n, we denote by Dy, € LAk >
the submatrix of D with rows ¢ and columns j of D such that both share s;
and share s; are given to player Pj.

Definition 4.1.3 An LSSS is said to be locally multiplicative if there exist
a fixed d-vector r and a local multiplicativity matrix D € L%*? such that
r-(s*(Dt)) = st.

In general, in a multiplicative LSSS all players — the honest players as
well as the dishonest ones — need to cooperate to reconstruct the product of
s and t. In a strongly multiplicative LSSS, the dishonest players do not need
to cooperate. Let C' C P be the subset of dishonest players. Clearly, C' € A.
The remaining honest n — |C| players in C should be able to reconstruct the
product of s and t on their own.

Definition 4.1.4 An LSSS is said to be pointwise strongly multiplicative if
for each A € A there exists a d5-vector 4 such that r4 - (sz xt4) = st.

Definition 4.1.5 An LSSS is said to be locally strongly multiplicative if for
each A € A there exist a dz-vector r4 and a local multiplicativity matrix
Dy € L%a*47 such that v - (sg* (D5t5)) = st.

Lemma 4.1.6 Let Syy = (L, M) be a linear secret sharing scheme over a
commutative ring L with share distribution matriz M = (m||M"). Let M'* =
(M M'||m*M'"), and let M* = (mxm]||M"™). Then S is multiplicative if
and only if there exists a vector r such that v M"™ = 0 and rT (m*m) = 1.

Proof. If § is multiplicative then by definition there exists a vector r
such that TT((Mbl) * (MbQ)) = b11bo7 for all by, bs. In particular,

rT((Mey)« (Mey)) =1,
m*xm

rT((Mey)« (Me;)) = 0 for all i > 1, and
mx M

rT((Me;) x (Mej)) = 0 for all i,j > 1.

Mix M3
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Hence, r" M'* = 0 and T (mxm) = 1.

Conversely, if there exists a vector r such that »7 M"™* = 0 and v (m «
m) = 1 then for any s,t € L, 7 (Share(s) «Share(t)) = r1 (st(m*m) + (s +
t)(mx M') 4+ M'x M') = st. Hence, S is multiplicative. [ |

Note that, a priori, this r is not the same as the original r from sec-
tion 3.1. In the following, we will say that r is a reconstruction vector for
multiplication if r - (s xt) = st for all s,¢ € L, and we will say that r is a
reconstruction vector for addition if r - s = s for all s € L.

Example 4.1.7 Let L = Zs. Let M be the 3 x 2 share distribution matrix

M =

W N =
-~ W N

The reconstruction vectors for addition are

0 1 2 3 4
1 ) 4 Y 2 ) 0 Y 3 Y
3 4 0 1 2

and the only reconstruction vector for multiplication is

1
2
3

Lemma 4.1.8 Let S be a multiplicative LSSS over a commutative ring L.
Let M = (m||M) € 1L9%¢ be the share distribution matriz. For any recon-
struction vector v for multiplication of S, v’ = m xr is a reconstruction
vector for addition of S.

Proof. If r is a reconstruction vector for multiplication of S, then for all
by, bS € L and for all s,t € L, v- (M (s||b])) = (M (t||by))) = st. In partic-
ular, fixt = 1 and b, = 0. Thent = r-((M(s||b}))xm) = (mxr)-(M(s||b}))
for all b € Le~! and for all s € L. This proves that 7/ is a reconstruction
vector for addition of S. |

Definition 4.1.9 We say that a pointwise multiplicative LSSS is homomor-
phic if there exists a reconstruction vector  such that r-(sxt) = (r-s)(r-t).

Definition 4.1.10 We say that a pointwise strongly multiplicative LSSS is
homomorphic if for each A € A there exists a reconstruction vector r—4 such

that 74 - (sgxtz) = (ra-sz)(ra-ta).
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Lemma 4.1.11 A linear secret sharing scheme Syq = (L, M) over a com-
mutative ring L with share distribution matriz M € L4*€ is homomorphic
if and only if there exists a reconstruction vector r = ( Ty e Tg )T such
that

(Im M)T (diagr — vTr) Im M = 0.

Proof. By definition, Sxq is homomorphic if and only if there exists a re-
construction vector r such that r- ((Mby)x(Mbz)) = (r-(Mby))(r- (Mb2))
for all by, be € LL¢. Note that 7 - (Mby) x (Mbs)) = (Mby)T diagr(Mby),
and that (r- (Mby))(r - (Mbs)) = (Mby)TrTr(Mbs). Equivalently,

(Im M) (diagr — rTr) Im M = 0. [ |

The following is a corollary of Lemma 4.1.8.

Corollary 4.1.12 Let § be a multiplicative LSSS over a commutative ring
L. Let M = (m||M) € L€ be the share distribution matriz. If 1 € Share(1)
then S is homomorphic.

However, if S is homomorphic, then it is not true in general that 1 €
Share(1). Over Zs, there are 2323 homomorphic multiplicative linear secret
sharing schemes with 3 x 2 share distribution matrices. Only for 421 of
those, 1 € Share(1).

Example 4.1.13 Let L. = Z5. Let M be the 3 x 2 share distribution matrix

2 4
M=\ 3 2
1 0

Let & be the LSSS defined by s = Mb. Note that S is homomorphic: the
vector (0,0,1)7 is a reconstruction vector for both addition and multiplica-
tion. However, the vector 1 is not in the image of M.

In Example 4.1.13, 1 is not even a valid share. If 1 is a valid share,
however, then 1 € Share(1) if § is homomorphic.

Lemma 4.1.14 Let S be a multiplicative LSSS over a commutative ring L.
If 1 € Share(s) for some s € L and S is homomorphic, then 1 € Share(1).

Proof. Suppose that 1 € Share(t) for some ¢ € L. Then by the ho-
momorphicity of § there exists a vector r such that for all s € L. and for
all s € Share(s), st = (r-s)(r-1) =r-(sx1) =r-s = s. In particu-
lar, for s = 1, 1t = 1. This proves that t = 1, and hence that 1 € Share(1). B

Shamir’s secret sharing scheme is multiplicative if n > 2¢, and strongly

multiplicative if n > 3t. Clearly, the (strongly) multiplicative Shamir secret
sharing scheme is homomorphic.
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Shamir’s secret sharing scheme. Let s, t € K be two secrets that have
been split into sets of shares s and ¢, respectively, by Shamir’s secret sharing
scheme. Each player P;, 1 < i < n, has been given the two shares s; and ;.

Let f, g be the two polynomials over K of degree ¢ with random co-
efficients fi,..., fn, and gi,...,¢gn, respectively, such that s; = f(i) and
t; = g(i), and f(0) = s and ¢g(0) = ¢. Note that st = f(0)g(0) = (fg)(0),

and
sxt=(f(1)g(1),..., f(n)g(n)) = ((f9)(1),...,(fg(n))).

The polynomial fg is of degree 2¢t. Any subset of players of ¢ + 1 or more
players is able to reconstruct the secrets s and ¢. Only the subsets of players
of 2t + 1 players, however, are able to reconstruct st.

If n > 2t, Shamir’s secret sharing scheme is multiplicative. The n-
vector r = (R1,...,Ry,) with r; = H}-‘:l#i% for '1 < < n.is a fixed
reconstruction vector. If n > 3t, Shamir’s secret sharing scheme is strongly
multiplicative, and the di-vector 15 with 74; = [] jeAjti % fori e Ais a
reconstruction vector for A € A.

4.2 Characterisation through Monotone Span Pro-
grams

In section 3.2, we proved that linear secret sharing schemes over a finite field
are equivalent to monotone span programs. In this section, we will define
monotone span programs with multiplication (mMSPs) and monotone span
programs with strong multiplication (m*MSPs). We prove that over a finite
field, multiplicative linear secret sharing schemes are equivalent to mMSPs,
and strongly multiplicative linear secret sharing schemes are equivalent to
m*MSPs.

Definition 4.2.1 An MSP (L, M, a, 1)) is said to be a monotone span pro-
gram with pointwise multiplication (mMSP) if there exists a d-vector r such
that for all by, by € L€

r - (Mby x Mby) = (a-by)(a- ba).

Definition 4.2.2 An MSP (L, M, a, ) is said to be a monotone span pro-
gram with pointwise strong multiplication (m*MSP) if for all A € A, the
MSP (L, M7, a) is multiplicative.

Example 4.2.3 Let L=7Zo,d=3,e=2,n=2.

0 01 1
Letr=1| 0 |,andlet M =| 1 1 2.
1 10 2
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Over Za,

We have that

()=o) ()= (0 for(o)= (o))

(D) (e ()
e ((3)() (1)

r- (Mbl *Mb2) = (CL . bl)(a . bz).

Definition 4.2.4 We say that a matrix D = (d;;) € L¥? is a local mul-
tiplicativity matriz if d;; # 0 only if row 7 and column j are labelled by
the same k € {1,...,n}. For 1 < k < n, we denote by Dy € L%**% the
submatrix of D with rows ¢ and columns j of D such that both row ¢ and
columns j are labelled by k.

Definition 4.2.5 An MSP (L, M, a, 1)) is said to be a monotone span pro-
gram with local multiplication (mMSP) if there exists a local multiplicativity
matrix D € L4 such that MTDM = aa”.

Definition 4.2.6 An MSP (L, M, a, 1)) is said to be a monotone span pro-
gram with local strong multiplication (m*MSP) if for all A € A, the MSP
(L, M, a) is multiplicative.

We now prove that over any commutative ring I, there is a corresponding
pointwise multiplicative LSSS for each MSP with pointwise multiplication.
This proof is due to [9]. In fact, m(*)LSSSs and m(*)MSPs over a finite
field are in one-to-one correspondence.

Theorem 4.2.7 For each monotone span program with pointwise multipli-
cation over a commutative ring there is a corresponding pointwise multi-
plicative linear secret sharing scheme. For each monotone span program
with pointwise strong multiplication over a commutative ring there is a cor-
responding pointwise strongly multiplicative linear secret sharing scheme.

Proof. Let (L, M, a,,r) be an mMSP. Let s, t € L be two secrets. Let
b1 € L° be a random e-vector with b1; = s. Similarly, let by € IL¢ be a
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random e-vector with ba; = t. Let the sets of shares given to player P;,
1 <¢<n,be s; =M;by and t; = M;bs, respectively. This means that s =
Mby and t = Mba. Then r-(sxt) = r-(MbyxMbsz) = (a-b1)(a-bz) = st. B

The share multiplication protocol may be constructed as follows [9]:

Each player P; picks a random vector ¢j, € L1 for each row k of M
labelled by i. Let cx = (sitx||c),). Player P; computes for each player P;,
1 <j<n, ugj = Mjcg. ug; is given to player P;. Each player P; then
computes v; = Zgzl TpUks. Let v = (v1,...,vy). Then

d d d d
rv=r- (Zrkukl, . ,Zrkukn) =7r. (Zrleck, .. .,Zranck)
k=1 k=1 k=1 k=1
d d
— o (MY ) = (M (55| S i)
k=1 k=1

d
=7 (M(st|| Y rch)) = st.
k=1

Now we prove that over any commutative ring IL, there is a corresponding
locally multiplicative LSSS for each MSP with local multiplication. This
proof is due to [11].

Lemma 4.2.8 For each monotone span program with local multiplication
over a commutative ring L, there is a corresponding locally multiplicative
linear secret sharing scheme. For each monotone span program with local
strong multiplication over a commutative Ting L, there is a corresponding
locally strongly multiplicative linear secret sharing scheme.

Proof. Let (L, M,a,, D) be an mMSP. Let s, t € L be two secrets.
Let by € L¢ be a random e-vector with b1y = s. Similarly, let b € LL¢ be
a random e-vector with by; = t. Let the sets of shares given to player P;,
1 < ¢ < n, be s; = M;by and t; = M;ba, respectively. This means that
s = Mby and t = Mbe. Then Y1 | 8;"Dit; = sTDt = (Mby)TDMby =
b1 MTDMbs" = b1"aaby = st. ]

The share multiplication protocol may be constructed as follows [11]:

Each player P; picks a random vector ¢} € Ll Let ¢; = (siTDitiHcg).
Player P; computes for each player P;, 1 < j < n, u;; = Mjc;. wu;j is
given to player P;. Each player P; then computes v; = Z?Zl uj;. Let
v = (v1,...,vy). By definition 3.2.2, there exists a r € L% such that
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MTr = a. Then
n n n n
rov :r-(Zujl,...,Zujn) :r'(ZMlc]',...,ZMan)
j=1 j=1 j=1 j=1
n n n
=r-(M> cj)=r- (M _s"Ditil| > c}))
j=1 j=1 Jj=1
n
=7 (M(st]| ) cf)) = st.
j=1

In the following example, we will consider the mLSSSs corresponding to
the mMSPs (Zs, M, a, ), where M is a 3 x 2-matrix with row 1 labelled by
1, row 2 labelled by 2, and row 3 labelled by 3.

Example 4.2.9 There are exactly 5° = 15625 3 x 2-matrices M over Zs.
For 10204 of those, the MSP (Zs, M, a, ) is multiplicative.

We consider the access structure I' = {{1,2}, {1, 3},{2, 3}, {1,2,3}}, or,
in other words, the adversary structure A = {{1},{2}, {3}, 0}.

Precisely 3840 of the 10204 mMSPs have this adversary structure. For
the other 6364 mMSPs, {1} € I', {2} € ', or {3} € T.

Up to permutation of rows and multiplication by a non-zero scalar, there
are thus 382 — 160 mMSPs with access structure I' and adversary structure

6x4
A.

In the remainder of this section, we will present two theorems from [8].

Lemma 4.2.10 Let f : {0,1}" — {0,1} be a Q2 monotone Boolean func-
tion. Then f = fV f*, where f* is the dual of f.

Proof. Let A C {1,...,n}. First, we prove by contradiction that

f(A) =0 = f(A) =0. Clearly, AUA = {1,...,n}. Now, f(4) =0 =
f(A) = A A € A'. This contradicts the fact that f is Q2. It follows that

FA) =0= f(A) = f~(A) forall AC {1,...,n}. Thus, f = fV f*. |

Lemma 4.2.11 Let M = (K, M,a,v) be an MSP of size d computing a
monotone Boolean function f, with a = (1,0,...,0). There exists an MSP
M* = (K, M* a,) of size d computing f* such that MT M* = aa”.

Proof. In this proof, we consider an MSP with target vector a’ =
(1,...,1). We may construct an MSP N* = (K, N*,a’,1) computing the
dual of a Boolean function f for a given MSP N = (K, N, a’, 1) computing
f[14]. We will first construct A from M, and then construct M* from N*.
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Let

1 0 0 0

1 10 0

o= 1 0 1 0

1 00 1

Then

1 0 0 - 0
-1 1 0 - 0
H1 = -1 0 1 - 0
-1 00 --- 1

Let N = MHT, let N = (K, N,a’,¢), with a’ = (1,...,1). Then A com-
putes f as Ha = a’ . As proved in [14], there exists an MSP N* =
(K, N*,a’,1) of size d computing f*. N* has d rows labelled like the rows
of N, and one column A 4 for each A such that f(A) = 1, with A4 such that
NTX4 = a’. This Aa exists since f(A) = 1 & a’ € Im N} by definition
3.2.7. Note that
1 ... 1
NTN* — :
1 ... 1
Let M* = N*(H YT, Then M = (K, M,a) computes f* as H 'a’ = a.
Moreover, MTM* = H-INTN*(H-1)T = aa”. The matrix M* may be
computed directly and efficiently from M [13]. |

Lemma 4.2.12 Let fy and f1 be monotone Boolean functions from {0,1}"
to {0, 1} computed by the MSPs My = (L, My, a,v) and My = (L, M1, a,v),
respectively, with a = (1,0,...,0) such that My and M; are d X e-matrices
with the same labelling from {1,...,n}, with M My = aa®. There exists
an MSP M with local multiplication of size 2d computing fo V fi.

Proof. Let Mj € L% be the matrix whose first column is equal to
the first column of M; and whose other e — 1 columns are equal to 0. Let
M € L4*¢~! be the matrix consisting of the last e — 1 columns of M;. We
define a 2d x (2e — 1) matrix M as follows:

My 0
w=( g )
The first d rows of M are labelled like the d rows of M, and the last d rows
of M are labelled like the d rows of Mj:
V(i) = (i) for 1 <i<d
YT\ wli—d) ford<i<2d
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Let I'g and I'y be the access structures of fy and f;, respectively. Clearly, the
access structure of foV f1 is To UT';. We now prove that M = (L, M, a, ')
is an MSP with local multiplication computing fo V fi.

Let A € ToUT,. Wlog A € T\y. By definition, there exists zg € L%
such that M{, zo = a. Let z = (20]|0) € 244, Then

MT My T z MT =z
T — 0a 1a 0 — 04%0 —
ke = (M9 e ) (9) = (167 ) ==
which means that a € Im MZ.
Now let A € ToUT; =TgNTy. By definition, there exist ko € Ker M,

with ko1 = 1 and k1 € Ker My, with k11 = 1. Let k = (kol|K]), where k]
is the vector consisting of the last e — 1 elements of k1. Then k1 = 1 and

i MOA 0 Ko . MOAK'O .
Mar = < MY, Mj, > ( K ) B ( My ) =%

which means that k € Ker M 4.
This proves that M is an MSP computing fy V fi. It remains to prove
that M is locally multiplicative. Let

(0 I 2dx2d
D<00>€]L .

Then

ML Mt 0 I M 0 MIM! MTIM,
T _ 0 1 0 _ 0 "1 0 "1
MDM‘(O M{T>(00)<M{’ M{)‘( 00 >

= aaT.

We will now present Theorem 7 from [8].

Theorem 4.2.13 Let M be an MSP computing a Q2 function f. There
exists a locally multiplicative MSP M of size at most twice the size of M
computing f. The algorithm with input M and output M is efficient.

Proof. Let M = (K, M, a,), with a = (1,0,...,0). By Lemma 4.2.10,
f = fVv f* By Lemma 4.2.11, there exists an MSP M* = (K, M*, a, )
of size d computing f* with MTM* = aa”. Then, by Lemma 4.2.12, there
exists an mMSP of size 2d computing f*V f = f. |

Now we present Theorem 6 from [8].

Theorem 4.2.14 For every finite field K and every monotone function f,
there exists a locally multiplicative MSP computing [ if and only if f is Q2,
and there exists a strongly locally multiplicative MSP computing f if and

only if f is Q3.
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Proof. We do not prove that if f is Q3, then there exists an m*MSP
computing f. By Fact 3.2.8 and Theorem 4.2.13, if f is Q2, then there exists
an mMSP computing f of finite size.

For the converse, let A be the adversary structure for f, and let M =
(K, M,a,) be the mMSP computing f. If f is not Q2, there exists A C
{1,...,n} with AUA = {1,...,n} and A, A € A. Notethat f(A) =0 a ¢
Im MY < a ¢ (Ker M4)*. Consequently, there exists an e-vector z € K®
such that M4z =0 and a - z # 0. Thus z; # 0, and wlog z; = 1. Similarly,
there exists an e-vector z’ € K® such that M3z’ = 0 and a-z’ # 0, and wlog
21 = 1. Let D be the local multiplicativity matrix. Clearly, (Mz)T DMz’ =
0. By definition 4.2.5, (M2)'DMz" = 2Taa”2’ = 22} = 1. This is a
contradiction. Hence, f must be Q2.

Let M = (K, M,a,v) be the m*MSP computing f. If f is not Q3,
there exist A, A", A” C {1,...,n} with AU AU A’ = {1,...,n} and
A A A" € A. Wlog A, A', A” are disjoint. There exist e-vectors z4, zar,
zan € K® such that Maza =0, Myrzar =0, Mpnzpar =0, and a-z4 =1,
a-za =1,a-zpa7 =1. Let D be the local multiplicativity matrix for A"
Then, by definition 4.2.6, (MWzA)TDMWzA/ = zalaa’z4 = 1. Note
that A7 = AU A’. Thus, (Mrza)? DMz 4 = 0. This is a contradiction.
Hence, f must be Q3. |

Both Theorem 4.2.13 and Theorem 4.2.14 may be generalised to com-
mutative rings [15]. As an example, we construct a locally multiplicative
MSP over the ring Zos2.

Example 4.2.15 Let I' = (PL A P2) V (P1 A P3) V (P2 A P3).

b,

P1 Pg Pl P3 P2 P3

Figure 4.1: DNF-based scheme for I' = (Py A Py) V (Py A P3) V (P2 A\ Ps3)
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. First, we construct an MSP M = (M, Zg32, a, 1)) computing I".

0 1 0 O 1
1 -1 0 0 2
0o 0 1 0 1
M= 1 0 -1 0 3
0 0 0 1 2
1 0 0 1 3

. Secondly, we compute the MSP N = (N, Zy32,a’, 1) from M according
to Lemma 4.2.11.

0100 1
11 11 1 011 2
0100 0010 1

— T _ —
N=MH" =M 0010 | 1101 3
0 001 0 0 01 2
1110 3

. Thirdly, we construct, according to Lemma 4.2.11, the dual MSP N'* =
(N*,Zgs2,a’ ;) of N.

N* =

OO OO
OO~ Rk OO
_— -0 O O O

— ==
W N W N =

—1

. Fourthly, we compute the dual MSP M* = (M*, Zys2,a,v) of M,
again according to Lemma 4.2.11.

1 -1 -1 0\ 1
1 -1 -1 -1 1 -1 -1 0 | 2

i vt sl 01 0 o] o 1 0o 1 |1
ME=NTHZ=N"g g 1 o |T|lo 1 o 1 |3
00 0 1 00 1 -1]2
o0 1 -1/ 3

. Finally, we construct the locally multiplicative MSP M = (M, Zys2, a, ')
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according to Lemma 4.2.12.

o 1 o0 0O 0 0 O 1
1 -1 0 0 O 0 O 2
o 06 1 o 0O 0 O 1
10 -1 0 0 0 O 3
o 0 0o 1 0 0 O 2
— 10 0 -1 0 0 O 3
M= 10 0 0 -1 -1 0 1
1 0o 0 0 -1 -1 0 2
0o 0 o o0 1 o0 1 1
o 0o o o0 1 0 1 3
0o 0 o0 o o0 1 -1 2
0o 0o 0 0 0 1 -1 3

Example 4.2.15 allows us, by Lemma 4.2.8, to construct a 2-out-of-3 lo-
cally multiplicative LSSS over the ring Zgs2. The size of this LSSS is 12, and
each of the three players is given four shares. Similarly, we may construct a
3-out-of-5 mLSSS and a 4-out-of-7 mLSSS. The 3-out-of-5 mLSSS will be of
size 60, with each player being given 12 shares, and the size of the 4-out-of-7
mLSSS will be 280 with 40 shares for each player.

4.3 Characterisation through Projection

Notation 4.3.1 Let S be a multiplicative linear secret sharing scheme. We
denote the set of reconstruction vectors for multiplication of S by R*(S).

Notation 4.3.2 Let M be a module over a ring I, and let X C M be a
finite subset of M. We denote by nzi(X) the set of index sets I such that
I € nzi(X) if there ezists © € X such that I is the index set of all non-zero
elements of x.

Bottom-up construction. Given a module M; C L% it is possible to
construct a possibly non-functional and insecure linear secret sharing scheme.

1. Fix a vector mg and define My = span (M7 x My Umg x My).
2. Define a linear secret sharing scheme by
Share(s) = smg + M

and the sets of reconstruction vectors for addition and multiplication
by

Ry ={reMi :rTmg=1},
Ro = {r € Ms- : 7T (mo»mg) = 1}.
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Theorem 4.3.3 FEvery multiplicative linear secret sharing scheme can be
generated by bottom up construction. If the sets of reconstruction vectors Rq
and Ra are non-empty, the linear secret sharing scheme defined is functional.
IfIL is a field, there exists an access structure I' such that the original scheme
1s secure and functional wrt I'. For rings I there might exist subsets of
players that are only able to deduce partial information about a secret.

Proof. First, we prove that there exists a bottom up construction for
every multiplicative linear secret sharing scheme. Let S be an mLSSS. By
Lemma 3.1.6, Share(s) = sm + Share(0) for a fixed vector m € Share(1).
Let My = Share(0), and let mg = m. By Lemma 4.1.6, R; = R(S), and
Ra2 = R*(S).

FuncTioNALITY. For any reconstruction vector 71 € Ry and s € L

r17Share(s) = r1 (smg + My) = sr1Tmo + 1T M = s
and for any reconstruction vector ro € Ro and s,t € L

roT (Share(s)  Share(t)) = 7o (st(mo x mo) + (s +t)(mo * M) + My + M)
= st.

SECURITY. Define I' = nzi(R1) U{A C P : A" € nzi(Ry) s.t. AD A’}
|

Lemma 4.3.4 Let K be a field. The sets of reconstruction vectors R1 and
Ra are non-empty if and only if mo ¢ My and mox mo ¢ Mo.

Proof. By Fact 2.2.22, mg ¢ M; if and only if M{- ¢ mg*. Hence, there
exists v/ € Mi- \ mo*. Let r = r,.lnor’. Then r € Mj- and 7Tmg = 1.
Hence, r € R1, and Ry # 0.

Similarly, by Fact 2.2.22, mo*mg ¢ Mo if and only if M- ¢ (moxmg)*.

: i 1 _ 1
Hence, there exists v/ € M5\ (mo * mg)—. Let r = WTI' Then

r € M3 and 7T (mg «mg) = 1. Hence, r € Ra, and Ry # 0.
Clearly, if R; and Ry are non-empty then mg ¢ M; and moxmg ¢ Mo.

4.3.1 Algorithm: isMult(M)

Let Sy = (L, M) be a linear secret sharing scheme over a ring L with share
distribution matrix M. In this subsection, we present an algorithm to check
whether Sy is multiplicative. In other words, we need to check whether
there exists a reconstruction vector r for multiplication for Syy.

Naively, we may do the following;:
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Algorithm 3 isMult(M)
for all » do
all_b « true
for all b1, b2 do
if 7- ((Mb1) % (Mbz)) # b11b21 then
all_b « false
break
end if
end for
if all_.b then
return true
end if
end for
return false

This algorithm is highly inefficient since the number of computations
increases exponentially with the number of columns of M. Lemma 4.1.6
allows for a more efficient algorithm. The following algorithm is more ef-
ficient since the number of computations increases only quadratically with
the number of columns of M.

Algorithm 4 isMult(M)
M* — (mxm||M' * M'||m % M')
for all r do
if r’M*=(1 0 ---0) then
return true
end if
end for
return false

Note that for both algorithms the number of computations increases
linearly with the size of S.
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Chapter 5

Threshold Linear Secret
Sharing Schemes

5.1 Threshold Access Structures

A (t+1)-out-of-n threshold secret sharing scheme is a secret sharing scheme

in which the secret may be reconstructed from any ¢ + 1 or more shares,

whereas no information about the secret may be deduced from any ¢ or

fewer shares. A threshold access structure with threshold ¢ is an access

structure in which any ¢t + 1 or more players may reconstruct the secret,

while no ¢ or fewer players may deduce any information about the secret.
Let P ={1,...,n} be a set of players.

Definition 5.1.1 A threshold access structure is a set I'y,, = {A C P :
|A| > t} of subsets of P with 0 < ¢ < n. Analogously, a threshold adversary
structure is a set Ay, = {A C P : |A| <t} of subsets of P with 0 < ¢ < n.

Note that any threshold access structure with threshold ¢ may be im-
plemented by a (¢ + 1)-out-of-n threshold secret sharing scheme by giving
precisely one share to each player. However, not all monotone access struc-
tures, no matter how many shares each player is given, may be implemented
as threshold secret sharing schemes.

Lemma 5.1.2 There exist monotone access structures for which there is no
threshold secret sharing scheme.

Proof. We prove that there is no threshold secret sharing scheme for the
monotone access structure I' = {{1,2}, {3,4}, {1,2,3}, {1,2,4}, {2,3,4},
{1,3,4}, {1,2,3,4}} = (PL A P2) V (P3 A Py). Let dy,da,ds, and d4 denote
the number of shares given to P;, P», P3, and P, respectively.

For a contradiction, we suppose that there is a threshold secret sharing
scheme for I', with threshold ¢. Since P; and P, are able to reconstruct the
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secret, di + do > t. Similarly, since P3 and P, are able to reconstruct the
secret together, ds+dy > t. Wlog we may assume that d; > do and d3 > d4.
Then, dy +dy > dy +do > t, and d3 + d3 > d3 + d4 > t, which implies that
di +ds >t/2+t/2 =1t. P, and Ps are thus able to reconstruct the secret
together. This contradicts the fact that {1,3} ¢ I". [

This lemma is due to [3]. Note that other non-threshold monotone access
structures, in particular, Q2 non-threshold monotone access structures, may
be implemented as threshold secret sharing schemes.

Lemma 5.1.3 There exist Q2 non-threshold monotone access structures for
which there is a threshold secret sharing scheme.

Proof. We prove that there is a threshold secret sharing scheme for
the Q2 monotone access structure I' = {{1}, {1,2}, {1,3}, {1,4}, {1,5},
{2,3}, {2,4}, {2,5}, {1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5},
(2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}, {1,2,3,4}, {1,2,3,5}, {1,2,4,5},
{1,3,4,5}, {2,3,4,5}, {1,2,3,4,5}} = P1V(P2/\P3)V(P2/\P4)\/(P2 /\P5)V
(Ps APy A Ps). Let di =3, d2 =2, and d3 = dy = d5 = 1. This defines a
3-out-of-8 threshold secret sharing scheme for I'. |

By Theorem 4.2.14, there exists a multiplicative MSP for a monotone
access structure I' if and only if I' is Q2. Note that a threshold access
structure I'; ,, is Q2 if and only if n > 2¢. There hence exists a multiplicative
MSP for I'y,, if and only if n > 2¢.

5.2 Characterisation of Threshold Linear Secret
Sharing Schemes

Lemma 5.2.1 Let L be a commutative ring, and let S be a (t+ 1)-out-of-n
threshold LSSS over L. If Share(0) has a basis, then dim Share(0) = ¢.

Proof. Let k = dim Share(0), and denote the k basis vectors of Share(0)
by m{,...,m}. Let s € L, and let m € Share(1). Let s € Share(s). By
Lemma 3.1.6, there exist u1, ..., ur € L such that

myo My Mg §
/ !/
, , mz o Mgy o My H1
S=sm+ puymy + -+ ppmy, = . .
/ /
My My o My Hi
Vv
M/
M
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Clearly, the columns of the matrix M’ are linearly independent, and
therefore rank M’ = k. Note that m ¢ Share(0). The columns of the matrix
M are therefore linearly independent, too. Thus, rank M = k + 1.

For a contradiction, suppose that £ < ¢t. By Fact 2.3.4, M has k + 1
linearly independent rows. Wlog, let those rows be the first £ + 1 rows.
Then,

! !
mi My o My s
S1 / /
m2 Moy 0 My H1
Sk+1 / /
Me+1 Myqp 0 Mgk Hi
N

By Fact 2.3.7, the matrix N is invertible. Thus,

s
K1

S1
=Nt
: s
i, +1
In particular, s = (N"1)1 - ( sy -+ spp1 ), where (N71); denotes the
first row of N~!. The secret s may thus be reconstructed from the k+1 < t
shares s, ..., sgy1. This contradicts the security of S.

Suppose, again for a contradiction, that k > t. By Fact 2.3.4, M’ has k
linearly independent rows. Wlog, let those rows be the first k& rows. Then,

81 ml ’I’)’LH mlk S
/ /
mz Moy Mog M1
Sk i '/ . ./
M Mgy o0 My )\ Hk
N/

For S to be functional, it must be possible to reconstruct the secret s from

any k > t shares, and thus there must exist a reconstruction vector r € ¥\

{0} such that r; ( my omiy - miy )—|—- oty ( mE My e My ) =
( 10 --- 0 ) In particular,

ro(myy e omly )b (myy o miy ) =0
This contradicts the linear independence of the rows of N’. |

By Lemma 5.2.1, we may assume in the following that for any (¢t 4 1)-
out-of-n threshold LSSS the share distribution matrix M has precisely n
rows and ¢ + 1 columns.
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Lemma 5.2.2 Let Sy = (L, M) be a (t+1)-out-of-n threshold linear secret
sharing scheme over a commutative ring I with share distribution matrix
M. If Sy is secure and functional then any t + 1 rows of M are linearly
independent.

Proof. For a contradiction, suppose wlog that the first t + 1 rows of M
are linearly dependent. Then there exist ui,..., s, er1 € L not all equal
to zero such that pep1 M1 = i My + - - - + pe My, implying that pyyis¢41 =
w181+ -+ st for any share vector s. Since Sy is functional, there exists a
reconstruction vector r € L!T! such that rys1+- - -4ris;+7115.41 = 5. This
implies that pe18 = riper151 + - + Fefier1St + reeiper1Se+1 = (Fiper1 +
Tep1p1)S1 + - -+ (repiegr + Ter1pee)Se. Wlog, py1 # 0. Thus, at least partial
information about the secret may be deduced from the first ¢ shares. This
contradicts the security of Syy. |

Lemma 5.2.3 Let Syr = (L, M) be a (t+1)-out-of-n threshold linear secret
sharing scheme over a commutative ring I with share distribution matriz M .
If any t + 1 rows of M are linearly independent then Sy is functional.

Proof. Let si,...,si,, be a subset of ¢ + 1 shares. Let My, ;.
be the concatenation of the rows M;,..., M;, . Note that Mg .
is a square matrix. Since the rows M;,,..., M;,, are linearly indepen-
dent, M;,,..., M;,, is invertible. Let r = M{:‘f...,z’tﬂ}( 10 --- 0 )T.
Clearly, TTM{il,...,it+1} = ( 10 -+ 0 ), which means that r is a recon-
struction vector for the shares s;,, ..., s ,: Sp is functional. n

Lemma 5.2.4 Let Sy = (L, M) be a (t+1)-out-of-n threshold linear secret
sharing scheme over a commutative ring I with share distribution matrix
M = (m||M'). If Sy is secure and functional then any t rows of M’ are
linearly independent.

Proof. Let Mj ..., M be a subset of t rows of M'. Let i;11 €
{1,...,n} \ {é1,...,%}. Since Sps is functional, there exists a reconstruc-
tion vector r € L such that riMiy + - My, = ( 10 --- 0 ),
implying that riMj + -+ + 1M, = 0. By Lemma 3.3.9, r4q s in-

vertible since {i1,...,i;+1} is a minimal qualified subset. Hence, ]\41»;+ L=

—r;rll(rlMi’l + .-+ r¢Mj,). By Lemma 5.2.2, the rows M;,,..., M;,_ are
linearly independent, which means that the square matrix (M;, || - ||M;,,,)
has maximal rank. By Fact 2.3.17, there exists an invertible square matrix
C € LX) such that Ji1yx(er1) = C(Mi,|| -+ ||M;,,,). This implies
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that

€21 " C2t41
€31 C3t41
! !
It><t = : .. : (M1,1H‘|Mlt+1)
Ct+11 - G141
-1 -1
€21 — Ty 1 T1C2t4+1 e Cot — Ty 1TtC2+1
-1 1
C31 — T 171C3t4+1 s C3t — T4 1 TtC3t+1
! !/
-1 -1
Ct+11 — T 1 T1C+1t+1 - Ce41t — T 1 TeCe+1t+1
Hence, the square matrix (M] ||---[|Mj],) is invertible. By Fact 2.3.7, this
implies that (Mj || ---||M;,) has maximal rank, which means that the rows
/ / . .
M; ..., M;, are linearly independent. |

Lemma 5.2.5 Let Sy = (L, M) be a (t+1)-out-of-n threshold linear secret
sharing scheme over a commutative ring I with share distribution matrix
M = (m||M'). If any t rows of M' are linearly independent then Sys is
secure.

Proof. Let A be an unqualified subset, wlog |A| = ¢. Note that since
any t rows of M’ are linearly independent, the matrix M/ is invertible.
A vector k € L'f! with k1 = 1 is in the kernel of My if and only if
ma + M'k! =0, where &’ = (ka,..., k1) . Equivalently, M'k! = —m 4.
Clearly, ' = —M'~'m 4 is a solution. Hence, Sy is secure. [ |

The following is a corollary of Lemmas 5.2.2, 5.2.3, 5.2.4, and 5.2.5.

Corollary 5.2.6 Let Syr = (L, M) be a linear secret sharing scheme over
a commutative ring L with share distribution matric M = (m||M"). Then
Snyr is a secure and functional (t + 1)-out-of-n threshold LSSS if and only
if any t + 1 rows of M are linearly independent and any t rows of M’ are
linearly independent.

The following definition is due to Z. Beerliova-Trubiniova and M. Hirt

[1].

Definition 5.2.7 We say that a matrix M with d rows and e columns is
hyper-invertible if for any index sets D C {1,...,d} and £ C {1,...,e} with
|D| = |E| > 0, the matrix M5 is invertible, where Mp denotes the matrix
consisting of the rows i € D of M, M denotes the matrix consisting of the
columns j € E of M, and ME = (Mp)*.
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Lemma 5.2.8 Let M be a d X e matrix over a commutative ring L. Then
any e rows of M are linearly independent if and only if there exist an in-
vertible e x e matriz U and a d X e matriz B such that M = BU with

1 0 0
0 1 0
B— 0 O 1 7
11 €12 - Cle
C21 Co2 +- C2e
Ckl Ck2 ' Cke

where k = d — e and the matriz C is hyper-invertible.

Proof. First suppose that M = BU. Let M’ be an e x e submatrix of M.
Then M’ = B'U, where B’ is an e x e submatrix of B. Since U is invertible,
rank M’ = rank (B'U) = rank B’. To prove that M’ is of rank e, it hence
suffices to prove that rank B’ = e. By elementary row operations, we may
convert B’ into the matrix

1 0O - 0 - 0
1 0 0
B 0 0O - 1 .- 0
C11 C12 e C1j o Cin
C21 C22 e C2j e Can

Ce—j1 Ce—j2 **° Ce—jj - Ce—je

for some 0 < j < e. Again by elementary row operations, we may convert
B” into the matrix

1 0 0 0
0 1 0 0 0
B" — 0 0 1 0 0
00 - 0 cyj1 -+ cCimn
00 -+ 0 cojq1 -+ Con
00 -+ 0 Cojjt1 + Ceje
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Note that by Fact 2.3.18,
rank B’ = rank B” = rank B"”

10 --- 0 Cljs1 Cljr2 0 Cle
o1 .- 0 C2j+1 Cojr2  ct Coe
= rank . . + rank i .
00 - 1 Ce—jj+1 Ce—jj+2 " Ce—je
C/

Since C' is hyper-invertible, C’ is invertible. Hence, rank B’ = j +e —j = e.

Conversely, suppose that that every subset of e rows of M is of rank e.
In particular, the first e rows of M are linearly independent. Let M; be the
invertible square matrix consisting of the first e rows of M, and let My be
the matrix consisting of the last k = d — e rows of M. Let U = My, and let
C = MyU~'. Then M = BU, where B is the d x e matrix

p-( 1),

It remains to prove that C is hyper-invertible. Let C’ be a j x j square
submatrix of C' for some 1 < j <e. Wlog

€11 €12 -+ Clj

€21 C22 -+ C2j
O =

Cil G2t Cjj

Since U~! is invertible and any subset of e or fewer rows of M is of maximal
rank, any subset of e or fewer rows of B is of maximal rank. For a contra-
diction, suppose that C” is not invertible. There hence exist v, ...,7; such
that 1 C1+- - -+7jC’j’- = 0. Note that, for 1 <i < j, Beyi—(cij41Bjr1+- -+
CieBe) = ( Ci1 - Cij 0O --- 0 ) HGHCG, 0= ’71(Be+1 — (Clj+1Bj+1 +
ot ereBe)) + o+ 9 (Betj — (¢i+1Bjt1 o+ cjeBe)) = Y1 Bep1 + 0 +
VjBetj— (yicrjr1+- - +vic41) Biyr — - — (1€1e + - - - +vj¢je) Be. Hence,
the subset of rows {Bji1,...,Be, Bet1,...,Beyj} of size e is of rank less
than e. This is a contradiction. Hence, C’ must be invertible. |

The following is a corollary of Lemma 5.2.4 and Lemma 5.2.8.

Corollary 5.2.9 Let L be a commutative ring. Let S be a (t + 1)-out-of-n
threshold linear secret sharing scheme over L. Then there exists a hyper-
invertible (n — t) x t matriz C such that M = (m||M') with

v- (1)

is a share distribution matriz for S for any m € Share(1).
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Lemma 5.2.10 Let Sy = (L, M) be a (t+1)-out-of-n threshold LSSS over
a commutative ring L with share distribution matrix M = (m||M). Then
at most t elements of m are equal to zero.

Proof. For a contradiction suppose that m has ¢t + 1 zero elements.
Wlog, by switching rows, the first £+ 1 elements of m are equal to zero. By
elementary column operations, wlog M/ = e;. Then clearly M;,; is a linear
combination of the first ¢ rows. This contradicts Lemma 5.2.2. |

Recall that Share(1) = m+ Share(0) for any m € Share(1). By Corollary
5.2.9 and Lemma 5.2.10, we may always assume that

0 1 0 e 0
0 0 1 e 0
M = 0 0 0 e 1 , (5.1)
Mmi+11 Me412 My413 - M1+l
mn1 mn2 mn3 s Mnt+1

where the elements my411, ..., my1 are non-zero and the matrix

me412 Mgp13 00 Mg41e4+1

mn2 mn3 tet Mnt+1
is hyper-invertible. In fact, the elements m¢y11,...,m,1 are invertible.

Lemma 5.2.11 Let Sy = (L, M) be a (t+1)-out-of-n threshold LSSS over
a commutative ring L with share distribution matric M = (m||M) such
that the first t elements of m are equal to zero. Then the remaining n —t
elements of m are invertible.

Proof. For a contradiction suppose that there exists i, t+1 < i < n, such
that m; is a zero divisor. Let z € IL such that zm; = 0. Then clearly zM; is
a linear combination of the first ¢ rows. This contradicts Lemma 5.2.2. W

5.2.1 Algorithm: isThreshold (M)

Let Sy = (K, M) be a linear secret sharing scheme over a field K with
share distribution matrix M. In this subsection, we present an algorithm
to check whether Sy is a (¢ + 1)-out-of-n threshold linear secret sharing
scheme. Naively, one could do the following;:
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Algorithm 5 isThreshold(M)
counter « (
for all 7 do
if isRec(r,M) and 7 has more than n — (¢t + 1) zero elements then
return false
end if
end for
for all r do
if isRec(r,M) and r has n — (t + 1) zero elements then
counter «+— counter + 1

end if

end for

if counter = (n_(:;_l)) then
return true

else

return false
end if

By Corollary 5.2.6, it suffices to check that any ¢ rows of M’ are linearly
independent and that any ¢ + 1 rows of M are linearly independent.

Algorithm 6 isThreshold(M)
for all subsets of ¢ rows M; ,..., M do

e
if det M, ., =0 then
return false
end if
end for
for all subsets of t + 1 rows M;,, ..
if det My;, ;.3 =0 then
return false
end if

end for

., M, . do

g1

return true

5.3 Efficient Generation of Multiplicative Thresh-
old Linear Secret Sharing Schemes

In this section, we will present an algorithm to generate all multiplicative
(t + 1)-out-of-n threshold linear secret sharing schemes over Z,, where p is
aprimeand p>n—t+1.

Fact 5.3.1 If the rows or columns of a hyper-invertible matrix are multiplied
by invertible elements, the matrix remains hyper-invertible.
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Lemma 5.3.2 Let Sy = (L, M) be a linear secret sharing scheme for an
access structure I' with share distribution matriv M = (m||M') € L€, Let
c € L% be a vector with invertible elements ci, . ..,cq. Let M = ex M. Then

s = Mb defines a linear secret sharing scheme Sy7 = (L, M) for T'. If Sy
is multiplicative, then Sy7 is also multiplicative.

Proof. Define a map ¢1 : R(Sy) — R(Sz7) by 7+ T, where 7; = ¢; 'r;.

Clearly, ¢1 is a bijection that maps reconstruction vectors r for A in Sys to
reconstruction vectors ¥ = ¢1(r) for A in Sy; for any A € I'. This proves
that S7 is an LSSS for T'.

Suppose that Sps is multiplicative. Define a map ¢o : R*(Sy) —
R*(S37) by r* — 7%, where 1*; = ¢; *rf. Clearly, ¢o is a bijection that
maps reconstruction vectors for multiplication r* for Sy; to reconstruction
vectors for multiplication r* = ¢o(r*) for S37. Hence, Sy7 is multiplicative.

If Sy is homomorphic, then Sg7 is not necessarily homomorphic.
Example 5.3.3 Let
11
M=11 2
1 3
Clearly, Sys is homomorphic. Let ¢ = ( 2 3 4 )T. Then

M =

=W N
N =N

The reconstruction vectors for addition are

0 1 2 3 4
1 ) 3 Y 0 ) 2 Y 4 Y
2 0 3 1 4

and the only reconstruction vector for multiplication is

2
3
1
Hence, Sy is not homomorphic.
Let m* = ( o --- 01 --- 1 )T be the n-vector whose first ¢ ele-

ments are equal to zero and whose remaining n — t elements are equal to 1.
The following is a corollary of Lemma 5.2.5.
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Corollary 5.3.4 Let L be a commutative ring. Let M’ be the n x t matriz

w= (L),

where C' is a hyper-invertible matriz. Let M = (m*||M'). Then s = Mb
defines a secure (t + 1)-out-of-n threshold linear secret sharing scheme Syy.

Note that Sys is not necessarily functional.

Example 5.3.5 Let M’ € Z7*? be the 7 x 2 matrix

10
0 1
2 6
M=|6 2
5 3
3 4
4 5
Note that
2 6
6 2
C=1|5 3
3 4
4 5

is hyper-invertible. Consider the qualified subset A = {3,4,5}. A vector
T 4 is a reconstruction vector if and only if 74 is a solution of the system of
linear equations

rm+ro+ryg=1

2r1 +6r9 + 9513 =0

611 4+ 2ro +3r3 =0

Equivalently, r 4 is a solution of the system of linear equations
r+ro+ry3=1

ro 4+ 613 =3
0=2

Clearly, there is no such solution 4.

Lemma 5.3.6 We may generate all (t + 1)-out-of-n threshold linear secret
sharing schemes over K by generating all (t 4+ 1)-out-of-n threshold linear
secret sharing schemes over K with m* € Share(1) and multiplying the last
n —t rows of the share distribution matriz M by non-zero elements.
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Proof. Let Sy = (K, M) be a (t + 1)-out-of-n threshold linear secret
sharing scheme over K with share distribution matrix M. By Corollary
5.2.9 and Lemma 5.2.10, wlog M = (m||M’), where the first ¢ elements of
m are equal to 0 and the remaining n — ¢ elements are non-zero and

w= (L),

where C' is hyper-invertible. By Lemma 5.3.2, s = M*b, where M} = leMl

for t +1 < i < n, defines a (¢t + 1)-out-of-n threshold linear secret sharing
scheme Sys+ over K with share distribution matrix M* = (m*||M"*), where

w_ 1
= (&)

By Fact 5.3.1, C* is hyper-invertible. Hence, Sys+ is one of the (¢ 4 1)-out-
of-n threshold linear secret sharing schemes with m* € Share(1) generated,
and Sys will be generated from Sy« by multiplying the ith row of M* by
myq. |

Naively, one would generate all n x (¢ + 1) matrices M over Z, and
check for each matrix whether the linear secret sharing scheme with share
distribution matrix M is a multiplicative (¢ + 1)-out-of-n threshold linear
secret sharing scheme. By Lemma 5.3.6 and Corollary 5.2.9, we do not need
to generate all possible n x (t 4+ 1) matrices over Z,. It suffices to generate
all possible (n — t) x t hyper-invertible matrices over Z,. By Lemma 5.3.2,
it is sufficient to check whether Sy; = (Z,, M) with

=4 ))

is a multiplicative (t 4+ 1)-out-of-n threshold linear secret sharing scheme:
a linear secret sharing scheme with share distribution matrix ¢ * M, where
c is a vector with the first ¢ elements equal to 1 and the remaining n — ¢
elements not equal to zero, is a multiplicative (t41)-out-of-n threshold linear
secret sharing scheme if and only if the linear secret sharing scheme with
share distribution matrix M is a multiplicative (¢t 4+ 1)-out-of-n threshold
linear secret sharing scheme. If the generation of hyper-invertible matrices
is efficient, the following algorithm is efficient:
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Algorithm 7 MultThreshold
thresholdMatrices <« ()
fori; =1top—1do

for is, =1top—1do

for i(,_yy =1top—1do
CI[A] i
C[1][2] « i2

Cln = t[t] — ity
if C is hyper-invertible then
I
w4 ))
if isThreshold(M) and isMult(M) then
for all ¢ do
thresholdMatrices < thresholdMatrices U ¢ x M
end for
end if
end if

end for

end for
end for

Note that all (¢ + 1)-out-of-n threshold linear secret sharing schemes
generated by algorithm MultThreshold are distinct. By Lemma 5.3.4, any
(t + 1)-out-of-n threshold linear secret sharing scheme over Z, with share

distribution matrix
I
_ *
M= 4

is secure. It suffices to check whether the scheme is functional. Algorithm
isThreshold(M) in section 5.2 checks both security and functionality. The
algorithm below is sufficient:

Algorithm 8 isThreshold(M)

for all subsets of ¢ + 1 rows M;,,..., M;, , do
if det My, 4,3 =0 then
return false
end if
end for

return true
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The algorithm is implemented in the programs MultThreshold2_3. java
for multiplicative 2-out-of-3 threshold LSSSs and MultThreshold3.5. java
for multiplicative 3-out-of-5 threshold LSSSs. Both programs use the library
MultThresholdLib. java.

Output of the program MultThreshold2 3. java for Zs (runtime < 1 min):

Enter n: 5
Number of 3x2 2-out-of-3 multiplicative threshold LSSSs over ZZ_5:
192

Output of the program MultThreshold2_3. java for Z7 (runtime < 1 min):

Enter n: 7
Number of 3x2 2-out-o0f-3 multiplicative threshold LSSSs over ZZ_7:
1080

Output of the program MultThreshold3_5. java for Z; (runtime < 5 mins):

Enter n: 7
Number of 5x3 3-out-of-5 multiplicative threshold LSSSs over ZZ_7:
418176

5.4 Existence of Threshold Linear Secret Sharing
Schemes

In section section 4.2, we constructed a linear secret sharing scheme over
Zgs2 for the threshold access structure I'y 3 in which each player is given 2
shares. In a 2-out-of-3 threshold linear secret sharing scheme for I'y 3, each
player is given just one share. In this section, we prove that it is not possible
to construct a 2-out-of-3 threshold linear secret sharing scheme over Zgs2.

Lemma 5.4.1 Let K be a finite field. A (t 4+ 1)-out-of-n threshold linear
secret sharing scheme over K can exist only if |[K| >n —t+ 1.

Proof. Let Sy = (K, M) be a (t 4+ 1)-out-of-n threshold LSSS over K.
By (5.1), wlog

0 1 0 0
0 0 1 0
M = 0 0 0 1
me411 Mygy12 Mg413 -0 Mg41t41
mn1 mn2 mn3 e Mnpt+1
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By Lemma 5.2.10, none of the elements m;1, t +1 < ¢ < n can be equal to
zero. By Lemma 5.3.2, there hence exists a (¢ + 1)-out-of-n threshold LSSS
SM* = (K, M*) with

0 1 0 0

0 0 1 0
M* = 0 0 0 1

L omiiy Mg M1t

L mpy mys e m;t-i-l

Again by Lemma 5.2.10, the n — ¢ last elements of M’! have to be distinct.
Note that none of the elements ml*j, t+1<i<n,2<j<t+1,can
be equal to zero: Wlog, suppose for a contradiction that mj,;; = 0. Then
Mgy —migMs — .. —mf,  Mf=(1 0 --- 0 ), which contradicts
that the threshold is ¢. Hence, |K| >n — ¢+ 1. [ |

Corollary 5.4.2 There does not ezist a (t+1)-out-of-n threshold LSSS over
Zo forn >t+1.

Note that there does exist an n-out-of-n threshold LSSS over Zs: the
additive scheme.

Theorem 5.4.3 Let (G;x) be a finite Abelian group. If there exists a (t+1)-
out-of-n threshold LSSS over G, then there exists a (t+1)-out-of-n threshold
LSSS over H for any characteristic subgroup H of G.

Proof. Let S = (G, (G,...,G),Share) be a (t + 1)-out-of-n threshold
LSSS over (G;x). Let Share; : G — G, 1 < i < n, be defined by Share;(s) =
Share(s);. Note that since Share is a group homomorphism, each Share; is
a group automorphism. Define Share%HI to be the restriction of Share; to H.
Since H is a characteristic subgroup of G, each Share]iHI is a group automor-
phism. Define Share® : H — (H, ..., H) by Share!(s) = (Sharefl, ..., Sharell).
Clearly, Share™ is a group homomorphism. Define S = (H, (H, ..., H), Share).
Below we prove that S™ is a (¢ + 1)-out-of-n threshold LSSS over (H; ).

First we prove that S™ is functional. Let A € I';,,. By the functionality
of S, there exists a reconstruction function Reca such that Reca(Shares(s)) =
s for all s € G. Define RecﬂgI to be the restriction of Reca to H. Then, for
all s € H, Recy(Sharet! 4(s)) = s. Hence, Rec is a reconstruction function.

Now we prove that S™ is secure. Let A € Ayt . Let s, 8" € H. Clearly, if
Share®(s)4 # Sharef(s") 4, then Share(s)a # Share(s’) 4. Hence, since S is
secure, ST must be secure. [ |
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Let L be a finite commutative ring, and let N = char L. By Fact 2.1.16,
N # 0. Note that the ring < 1 >=1:7Z = Zy is a subring of L. Further,
note that the group (< 1 >;+) = (Zy;+) is a characteristic subgroup of
(L;4). By Theorem 5.4.3 above, in order to prove that there does not exist
a (t + 1)-out-of-n threshold linear secret sharing scheme over the ring L, it
is sufficient to prove that there does not exist a (¢ + 1)-out-of-n threshold
linear secret sharing scheme over the ring Zy. In fact, by Corollary 5.4.4
below, it is sufficient to prove non-existence of a (¢ + 1)-out-of-n threshold
linear secret sharing scheme over the field Z,, where p is a prime divisor of
N.

Corollary 5.4.4 If there exists a (t+1)-out-of-n threshold LSSS over (Zn;+),
then there exists a (t+1)-out-of-n threshold LSSS over (Zy; +) for any prime
divisor p of N.

Proof. Let p be a prime divisor of N. By Corollary 2.1.12, (Z,; +) is a
characteristic subgroup of (Zy;+). Hence, by Theorem 5.4.3, there exists a
(t + 1)-out-of-n threshold LSSS over (Zy; +). [ |

Corollary 5.4.5 Forn > t+1, there does not exist a (t+1)-out-of-n thresh-
old LSSS over (Zqk;+) for any integer k > 0.

Proof. For a contradiction, suppose that there exists an integer k£ > 0
such that there exists a (¢ + 1)-out-of-n threshold LSSS over (Zgx; +). Zs2 is
a characteristic subgroup of Z,x for any £ > 0. Hence, by Corollary 5.4.4,
there exists a (¢ 4 1)-out-of-n threshold LSSS over (Zg; +). This contradicts
Corollary 5.4.2. |

5.5 Polynomial Interpolation and Multiplicative
Threshold Linear Secret Sharing Schemes

Shamir’s secret sharing scheme is an example of a (¢ 4 1)-out-of-n threshold
secret sharing scheme with threshold access structure I'; ,,. Shamir’s secret
sharing scheme is optimal with respect to share size: each share is of the
same size as the secret. In general, for perfectly secure linear secret sharing
schemes, the size of a share is at least the size of the secret. Only for e-secure
linear secret sharing schemes, the size of a share may be less than the size
of the secret. Recall that the ith Shamir share is equal to the evaluation
of a polynomial of degree t at the point 7, and the secret s is equal to the
polynomial evaluated at the point 0. Shamir’s secret sharing scheme is based
on polynomial interpolation.
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Definition 5.5.1 Let S be a linear secret sharing scheme for the threshold
access structure I'y ,. We say that S is based on polynomial interpolation if
there exist aq,...,aq € L such that for any valid sharing (s, ..., sq), there
exists a polynomial f of degree ¢ such that s; = f(a;) for all 1 <i <d.

The ith share of a linear secret sharing scheme based on polynomial
interpolation is equal to the evaluation of a polynomial of degree ¢t at some
point, and the secret s may or may not be equal to the polynomial evaluated
at some point.

Lemma 5.5.2 Let & be a linear secret sharing scheme for the threshold
access structure I'y,. There exists a polynomial f of degree t such that
flag) = s for some ay € L and S is based on polynomial interpolation with
f if and only if there exists a polynomial f' of degree t such that f'(0) = s
and S is based on polynomial interpolation with f'.

Proof. Suppose that there exists a polynomial f of degree ¢t such that
f(ap) = s for some o € L and S is based on polynomial interpolation with
f. Let aq,...,a, be such that f(a;) = s; for all i, 1 < ¢ < n. Define
Bi = ai — ao, and define f'(z) = f(z + ag). Then, f'(8;) = f(ai) = si,
11(0) = f(ag) = s, and deg f = deg f = t. Thus, S is based on polynomial
interpolation with f’, and f’(0) = s.

Conversely, suppose that there exists a polynomial f’ of degree t such
that f/(0) = s and S is based on polynomial interpolation with f’. Define
f = [, and define ag = 0. Clearly, S is based on polynomial interpolation
with f, and f(ap) = s. [ |

Lemma 5.5.3 Let S be a linear secret sharing scheme for the threshold
access structure I'y ,. Let S be defined by s = Mb with M & L4*%€. Then S
is based on polynomial interpolation if and only if there exist a d x (t 4+ 1)
Vandermonde matriz V € LD and o (t + 1) x e matriz F € L) xe
such that M =V F.

Proof. Recall that by definition, M! € Share(1) and M2, ... M¢ €
Share(0). If S is based on polynomial interpolation, then there exist
ai,...,aq € L and polynomials f1, ..., fe of degree t such that m;; = f;(cy).
Let the coefficients of f; be fij,..., fir1j, and define F = (f;;) € LE+Hxe,
Let V' be the Vandermonde matrix V = V(ay,...,aq). Clearly, M = VF.

Conversely, let the Vandermonde matrix V = V(ay, ..., aq) € L&+
and F' € LU+D*e he such that M = VF. Let fj(z) = fij+ faja+- -+ fir1j2
for 1 < j <e, and define f(z) = b1 fi(z)+---+befe(x). Then f is of degree
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t, and

si=Mb=(1 a; -~ al )Fb
=(futaifa+-+alfipun o fletaifoet o+l firre )b
=( filag) -+ felow) ) b= f(ay)

forall 1 <4 <d. [ |

Lemma 5.5.4 Let L be a finite commutative ring, and let a (t+1)-out-
of-n threshold LSSS S be defined by s = Mb with M e L™+ Then
there exists a polynomial f of degree t such that S is based on polynomial
interpolation with f and f(0) = s if and only if M = V' F for ann x (t+1)
Vandermonde matriz V' and a (t + 1) x (t + 1) invertible matriz F with
Fr=(10 - 0).

Proof. If S is based on polynomial interpolation with f such that f(0) =
s, then by Lemma 5.5.3, there exist an n x (t + 1) Vandermonde matrix V'
and a (t+ 1) x (t + 1) matrix F' such that M = VF, and f(x) = by f1(x) +
oo+ befe(x), where fj(z) = f1j + fojz 4+ -+ + fip1j2t for 1 < j <e. Note
that s = f(0) = b1 f1(0) + -+ - + be fe(0) = by f11 + - - - + be f1e. Recall that by
definition b1 = s. Hence, fi3 = 1 and fio = --- = fi;41 = 0. By Lemma
3.3.7, the matrix F' is invertible.

Conversely, if M = VF for an n x (¢t + 1) Vandermonde matrix V' and
a (t+1) x (t+ 1) invertible matrix F with Fy = (1 0 --- 0 ) then by
Lemma 5.5.3, there exists a polynomial f of degree ¢t such that S is based
on polynomial interpolation with f, and f(z) = s+ (fo1b1 + fooba + -+ +
forr1berr) @+ -+ (frrr1bi+ frp12bo+ - -+ frp1e41be41)2". Hence, f(0) = s. W

Definition 5.5.5 Let L be a commutative ring, and let n be an integer,
n > 2. We say that L is n-interpolation friendly if there exist invertible
elements ay,...,a, € L such that for each ¢ # j, 1 < i,j < n, the element
a; — o € L is invertible as well.

Theorem 5.5.6 below is due to R. Cramer, S. Fehr, Y. Ishai, and E.
Kushilevitz [11]. This theorem proves that for any n-interpolation friendly
ring L, there exists a t + l-out-of-n threshold LSSS based on polynomial
interpolation for any threshold access structure I'; ,,.

Theorem 5.5.6 Let I';,, be a threshold access structure. Let L. be an n-
interpolation friendly ring. Then there exists an MSP M = (L, M, a, ) for
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Iy of size n, with

1 o of of
1 ay ol ol

M - . . . )
1 a, o2 al

and (i) = i for each i, 1 < i < n. M is multiplicative if and only if
t <n/2, and strongly multiplicative if and only if t < n/3.

Clearly, the LSSS corresponding to the MSP M = (L, M, a, ) is based
on polynomial interpolation with V. = M and F = I, where I is the
(t+1) x (t+ 1) identity matrix.

Proof. First, we prove that M is an MSP for I'; .

Let A = {i1,42,...,it41} be a subset of cardinality t+1, that is, A € 'y ,.
Then, M4 is a Vandermonde matrix with determinant det M4 = [] > k(aij —
«;, ). By assumption on a1, ..., oy, det My is invertible, which implies that
M 4 is invertible. Thus, a € Im M};.

Now let A = {41,142, ...,4t} be a subset of cardinality ¢, that is, A ¢ I'; .
Denote the first column of M4 by y, and denote the concatenation of the
t last columns by N4 € L™ Then, det Ng = ay, -+ - o, [Lsn(es; — i),
which is invertible again by assumption on ay,...,qa,. This implies that
Ny is invertible. Thus, y € Im N 4. Thus, there exists a vector  such that
0=y — Ngx = My(1—x). Define

(%)
K= ,
—x
then M4k =0, and k1 = 1.

Next, we prove that M is multiplicative if and only if ¢ < n/2, and
strongly multiplicative if and only if ¢ < n/3.

If 2t < n, then by the above there is a linear combination of the rows of
the matrix

1 ap a2 -+ of
1 ag a2 - ot
1 a, o2 a2t

which yields (1,0, ...,0). In other words, there exist dy, ..., d,, € L such that
S di(l, 4,02, .. at) = (1,0,...,0). Let D € L™™ be the diagonal

)
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matrix diag (dy,...,dy). Then

11 -1 d 0 - 0 1 ap of
T ar Qg o Qg 0 do --- O 1 o oz%
M*DM =
af o oo o o 0 - d, 1 a, o
2 ¢
di dy -+ dy 1 o a% el
t
dioy doas -+ dpop 1 a a5 -+ af
¢ t ¢ 2 ¢
dioy doas - dpoy, 1 ap of -+
n n n t
Zi:1 d; Zi:1 dia;' T Z¢:1 di(:f-l
n n n
B s dic YL diog o 00 diog
n ot n = = n 2t
dicdic Yl diy; > iy dic;
¢
1 lo% o
n e a? a?l
Z T
=l e
¢ ¢
oy oy

Note that 3t < n if and only if 2¢ < n —t, and note that for all A € A;,,,
|A] > n—t. Let A € Ay, that is, A = {i1,...,i,} is a subset of cardinality
k > n —t. Again by the above, there is a linear combination of the rows of
the matrix

. 2 2t
1 oy ag, o
. 2 2t
I oy, of, -+ o
) 2 .. 2t
1 oy, a;, o,

which yields (1,0,...,0). In other words, there exist d;,,...,d;, € LL such
that Zj-;:l di; (1,00, 02 ...,a%;) = (1,0,...,0). Let Dy € L*** be the

257

diagonal matrix D = diag (d;,,...,d;, ). Then

‘ t
1 o7y o
T . oy o o) T
MIDsMz=%"di | . 7 . 7 |=ad"
jzl . 1 . .
t 2t
Qi Oy @i,

Theorem 5.5.6 only applies to n-interpolation friendly rings .. We will
now consider the applicability of the theorem to rings L. = Zpkl W with p;
1

prime and k; € Ny for 1 <i <.
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Lemma 5.5.7 Let p be a prime. Theorem 5.5.6 applies to L. = Z,, if and
only if n < p.

Proof. If . = Z, for some prime p, then L is a field. Any non-zero
element in a field is invertible. There are precisely |L| — 1 = p — 1 such ele-
ments. For any two distinct non-zero elements a and b, a — b # 0, which is
equivalent to a — b being invertible. Thus, . = Z,, is n-interpolation friendly
if and only if n < p. |

Lemma 5.5.8 Let p be a prime, and let k € N. Theorem 5.5.6 applies to
L = Z, if and only if n < p.

Proof. An element a € Z, is invertible in (Z,,-) if and only if a #
0 mod p. There are p* — p*~! such elements. Let b and ¢ be two of them.
Then b — c is invertible in (Z,x,-) if and only if b — ¢ #Z 0 mod p, which
is equivalent to b # ¢ mod p. Note that b mod p,cmod p € {1,...,p — 1}.
Thus, . = Z, is n-interpolation friendly if and only if n < p. |

Lemma 5.5.9 Let p and q be two primes, p # q. Theorem 5.5.6 applies to
L = Z,q if and only if n < min {p, ¢}.

Proof. An element a € Zp, is invertible in (Z,,,-) if and only if a #
Omod p and @ # 0 mod q. There are (p — 1)(¢ — 1) such elements. Let
b and ¢ be two of them. Then b — ¢ is invertible in (Z,q,-) if and only if
b—c¢ # 0mod p and b — ¢ # 0 mod ¢, which is equivalent to b #Z ¢ mod p
and b Z cmod ¢q. Note that b mod p,cmodp € {1,...,p — 1}, and that
bmod g,cmod g € {1,...,q — 1}. Thus, Zp, is n-interpolation friendly if
and only if n < min{p, ¢}. |

In general, Theorem 5.5.6 applies to the ring I = Zpk1 W with p; prime
1P

and k; € Ny for 1 < ¢ <[ if and only if n < min{p1,...,p;}. In particular,
the theorem does not apply to the ring L = Zqk.

Theorem 5.5.6 only proves the existence of a (¢ + 1)-out-of-n threshold
LSSS based on polynomial interpolation for the threshold access structure
I't,. We will now prove that any n-out-of-n threshold LSSS over an n-
interpolation friendly ring L for I';,, is based on polynomial interpolation.

Lemma 5.5.10 Let I';,, be a threshold access structure with n = t + 1,
and let I be an n-interpolation friendly ring. Let a (t + 1)-out-of-n LSSS
S over L for Ty, be defined by s = Mb, with M = (m||M') € L"*¢ and
b= (s||b") € L. Then S is based on polynomial interpolation.

Proof. Let ay,...,ay € L be such that a; — «; is invertible for all i # j,
1 <i,j7 <n. Let V be the n x n Vandermonde matrix V = V(ay, ..., ay).
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Then, V is invertible with inverse V1. Define F = V"!M. S is based on
polynomial interpolation with M = V F. |

Let S, defined by s = Mb, with M = (m||M’) € L™+ and b =
(s]|b") € L**L, be a (t+1)-out-of-n threshold LSSS over a ring L that is based
on polynomial interpolation with M = V F'. Let r be a reconstruction vector
for S. Then s =r-s =7r-(Mb) =r-(VFb). Let Sy be the LSSS defined by
s=Vb. If n =t+1, there is, by Lemma 3.3.2, precisely one reconstruction
vector ry for Sy and precisely one reconstruction vector r for S. Note that
if n =t+1, V is invertible, and b = V~1Vb = V~ls. Hence, ry = (V 1)1,
where (V1)1 denotes the first row of the matrix V~1. Further, note that
b=F"WlVFb=F1V~ls Hence,r = fi;' (V" 1)1+ -+ fi20 (V1 e4,
where fl-;l denotes the ijth element of the matrix F~!, and (V~!); denotes
the ith row of the matrix V~!. Note that r = ry if Fy = (1,0,...,0).

Lemma 5.5.11 Let Sy = (L, M) be a (t+ 1)-out-of-n threshold LSSS with
share distribution matric M € L") over a ring L. If Sy is based on
polynomial interpolation then 1 € Sy;.

Proof. If Sys is based on polynomial interpolation then by Lemma 5.5.3,
there exist an n x (¢t + 1) Vandermonde matrix V and a (¢t + 1) x (¢t + 1)

invertible matrix F' such that M = V F. Clearly, V ( 10 --- 0 )T =1.
Letz=F'(1 0 --- 0)". Then Mz=VFF (1 0 -.- 0)" =
V(l 0 --- 0)T:1.Thisprovesthat1€SM. |

Note that in general, the converse of 5.5.11 is not true: if 1 € Sy, where
Sar is a (t 4+ 1)-out-of-n threshold LSSS, then Sj; is not necessarily based
on polynomial interpolation.

Example 5.5.12 Let K = Z7, let t = 2, and let n = 5. Let Sy; be the
3-out-of-5 threshold LSSS with share distribution matrix

0

|
S Ty sy Y
NN = O =
Ot W~ =

Then clearly 1 € Sys, but Sy is not based on polynomial interpolation.

Lemma 5.5.13 Let Sy = (K, M) be a (t+1)-out-of-n threshold LSSS with
share distribution matriz M € K™D over o field K. If Sys is based on

polynomial interpolation with M = VF then F' = ( % 0 --- 0 )T if
1 € Shares,, (c) forc#0, and F*=(1 0 --- 0 )T if 1 € Shareg,, (0).
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Proof. By Lemma 5.5.11, 1 € Shareg,,(c) for some ¢ € L. First
suppose that ¢ # 0. Let z be such that Mz = 1, and let 2’ = %z.
Then 11 = Mz’ € Shares, (1). Wlog M' = 11 = 1yl Note that
%Vl =M!'= fuV' + fo1V2 4+ -+ fio11 VL By the linear independence
of V1, ..., Vt*L fi; = %,f21 =0,..., ftr11 = 0. Suppose now that ¢ = 0.
Then wlog M? = 1. Note that V! = M? = fioV 4 foo V24 4 frip VI
By the linear independence of V!, ... , VIl flo =1, foo =0,..., fiy12 = 0.
|

Lemma 5.5.14 Let Sy = (K, M) be a (t+1)-out-of-n threshold LSSS with
share distribution matric M € K™D over o field K. If there exists a
Vandermonde matriz V. € K™ such that R(Sy) = c¢R(Sy) for some
¢ # 0 then Sy is based on polynomial interpolation.

Proof. Note that ¢cR(Sy) = R(S1,). Hence, by Lemma 3.3.4, R(Sy) =

¢R(Sy) if and only if there exists an invertible matrix C' € K(+1)>*(t+1) with

C) = ( 10 --- 0 ) such that M = %VC. Clearly, %VC’ = V%C. Let
F= %C. Then M = V F, and by Lemma 5.5.3, Sjs is based on polynomial
interpolation. |

Lemma 5.5.15 Let L be a commutative ring, and and let a (t+1)-out-of-n
threshold LSSS Syr be defined by s = Mb with M € L™**L. [f Syr is based
on polynomial interpolation with f such that f(0) = s then 1 € Sharegs,,(1).

Proof. By Lemma 5.5.4, Sps is based on polynomial interpolation with
f such that f(0) = s if and only if there exist a Vandermonde matrix V' €
L™+ and an invertible matrix F € KX with i = (1 0 -+ 0
such that M = VF. Clearly, 1 € Shares, (1). Hence there exists a vector
z € L' such that Vz = 1. Let 2/ = F~1z. Then Mz’ = VFF 'z = 1.
Note that if F} = ( 10 --- 0 ) then F1_1 = ( 10 --- 0 ) Hence,
21 = z1 = 1, and hence, 1 € Shareg,, (1). [ ]

The following is a corollary of Lemma 5.5.15 and Corollary 4.1.12.

Corollary 5.5.16 Let S be a (t + 1)-out-of-n threshold LSSS over a com-
mutative ring L. If S is based on polynomial interpolation with f such that
f(0) = s then S is homomorphic.

2-out-of-n threshold linear secret sharing schemes

The following is a corollary of Lemma 5.5.4.
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Corollary 5.5.17 Let L be a finite commutative ring, and let a 2-out-of-n
threshold LSSS S be defined by s = Mb with M € L."*?. Then there exists
a polynomial f of degree 1 such that S is based on polynomial interpolation

with f and f(0) = s if and only if M = VF for an n x 2 Vandermonde
matriz V and a 2 X 2-matrix F' given by

1 0
F= < Ja1 f22>

for some foa1, foo € L, with foo invertible.

In general, V and F' are not unique. In particular, there may exist V
and F such that s = f(0), and V' and F’ such that s # f/(0).

Example 5.5.18 Let K = Z5, and let
11
M=11 2
1 3

Let Sp)s be the 2-out-of-3 threshold LSSS with share distribution matrix
M. Then Sy is based on polynomial interpolation with V' = V'(1,2,3) and
F = 1, and Sy, is based on polynomial interpolation with V' = V' (4,1, 3)

and
1 4
F_<03>.

Lemma 5.5.19 below allows us to deduce from any pair (V, F') whether
there exists a pair (V', F’) such that s = f(0).

Lemma 5.5.19 Let L be a finite commutative ring with ZD(L) < n — 1,
and let a 2-out-of-n threshold LSSS S be defined by s = Mb with M € L™*2,
Let S be based on polynomial interpolation with M = V' F for some Vander-
monde matriz V € L™2 and an invertible matriz F € 1L2>*2. Then there
exist a Vandermonde matriz V' € L2*™ and an invertible matriz F' € 1L2*?
with fi; = 1 and f{5 = 0 such that S is based on polynomial interpolation
with M = V'F’ if and only if there exists y € I such that fi1 = 1+ fi12y
and fo1 = faoy.

Proof. First we prove that if there exist a Vandermonde matrix V' €
2% and an invertible matrix F’ € L2*? with f{; = 1 and f], = 0 such that
S is based on polynomial interpolation with M = V’'F’ then there exists
y € L such that fi1 =1+ fioy and fo1 = fo2y.
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Note that V' = VFEF'~!. Let V be given by V = V(ay,...,ay). Then

1 (65}

V= 1 o <f11 f12>< 1 0 )
s for o fa2 —foufo™t ot
1 a,

fi1 = frafhifho b+ an(for — foafoifoa™ ) frofhe ™t + aa foa foo ™t
fi1 = fiafon foo ™t 4 ao(for — foafoifho™)  frafoe ™t 4 aoforfiy

fi1 = fiafon fo 4 an(for — foofhi foo™)  frofos ™t 4 anfoafo ™t

Let y = f}; f45~!. Then we have, by the definition of a Vandermonde matrix,
f11 — f12y + Oéi(fgl — fggy) =1forall 1 <34 < n. Note that «o; 7& o7 for
all i # j, and that hence at least two of the «; are not zero divisors, and
invertible by Fact 2.1.19. Hence, f11 = 1+ fioy and fo1 = fooy.

We now prove that if there exists y € L such that fi; = 1+ fioy and
for = fooy, then there exist a Vandermonde matrix V! € L?*" and an
invertible matrix F’ € L2*? with f{; = 1 and f{, = 0 such that S is based
on polynomial interpolation with M = V'F’.

Define a 2 x 2 matrix F’ by

, (10
P=(1)).

Let V be given by V =V (ay,...,a,), and define an n x 2 matrix V' by
1 fio+aifa
- 1 fio+asfa

1 fi2 + anfoo

Then
L+ (fizt+a1f2)y  fi2 +aafa
' 1+ (fiz + o2fe2)y  fi2 + o fa
L+ (fiz+anfa2)y  fia+ a1 fa
Hence, S is based on polynomial interpolation with M = V'F’. |

Example 5.5.20 Let L. = Zs5. Let M be the 3 x 2 share distribution matrix

1
M= 2
3

Y \]
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from Example 4.1.7, and let S be the 2-out-of-3 threshold LSSS defined by
s = Mb. Then

and S is based on polynomial interpolation with f(x) = b + (s + b2)x.

Here, f11 =0, fi2 =1, for = 1, and foo = 1. Note that fi1 =1+ fi2y
if and only if y = 4, and that fo; = fooy if and only if y = 1. Over Zs,
such a y does not exist. By Lemma 5.5.19, there does therefore not exist a
polynomial f” of degree 1 such that S is based on polynomial interpolation
with f" and f/(0) = s.

Lemma 5.5.21 below allows us to deduce directly from the matrix M
whether the 2-out-of-n threshold LSSS with share distribution matrix M is
based on polynomial interpolation with f such that s = f(0).

Lemma 5.5.21 Let L be a commutative ring, and and let a 2-out-of-n
threshold LSSS S be defined by s = Mb with M € L."*?. Then there exists
a polynomial f of degree 1 such that f(0) = s and S is based on polynomial
interpolation with f if and only if there exists y € L such that m;1 = 1+myoy
forall1 <i<n.

Proof. If a 2-out-of-n threshold LSSS over L is based on polynomial
interpolation with f, and f(0) = s, then by Lemmas 5.5.3 and 5.5.17, there
exist a Vandermonde matrix V = V(aq,...,a,) and a 2 X 2 matrix

B 1 0
b= < Ja f22>

with foo invertible such that M = V' F. For each 7, 1 < i < n, we thus have
the system of linear equations

{ mi1 = 1+ a; fa
Mo = ; foo

Thus, by the invertability of fao, mi = 1 4+ miafay for for all 1 < i < n.
Define y = f2_21f21.
Conversely, if there exists y € L such that m;; = 1 + myey for all 1 <

1 < n, then define
10
F_<y 1)’

and
1 mio
1 mag
V p—
1 Mn2
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Then, V is a 2 x n Vandermonde matrix, and M = V' F. Hence, by Lemma
5.5.17, there exists a polynomial f of degree 1 such that f(0) = s and S is
based on polynomial interpolation with f. |

Recall that the converse of Lemmas 5.5.11 and 5.5.15 does not hold
for general (¢ + 1)-out-of-n threshold linear secret sharing schemes. In the

following two lemmas, we prove that the converse does hold for 2-out-of-n
threshold LSSSs.

Lemma 5.5.22 Let K be a finite field, and and let a 2-out-of-n threshold
LSSS Sy be defined by s = Mb with M € K"*2. Then Sy is based on
polynomial interpolation if and only if 1 € Syy.

Proof. By Lemma 5.5.11, if S is based on polynomial interpolation then
1 € S. Conversely, suppose that 1 € S. First suppose that 1 € Share(c) for
¢ # 0. Wlog,

1 my
M 1 mgy

% mn2

Hence, M = V F with

1 mi2

1 mao
V =

1 mpo

and

10
(i 1)

Note that for S to be secure, mg; # mo; for all @ # j. Hence, V' is a Vander-
monde matrix, and by Lemma 5.5.3, S is based on polynomial interpolation.
Now suppose that 1 € Share(0). Wlog,

mi1 1
mai 1

mni 1

Hence, M = V F with
1 mi1
1 mo

1 mni1
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and
0 1
o < 0 ) |
Note that for S to be secure, my; # mq; for all i # j. Hence, V is a Vander-

monde matrix, and by Lemma 5.5.3, S is based on polynomial interpolation.
|

Lemma 5.5.23 Let K be a finite field, and and let a 2-out-of-n threshold
LSSS Syr be defined by s = Mb with M € K"*2. Then Sy is based on poly-
nomial interpolation with f such that f(0) = s if and only if 1 € Shares,, (1).

Proof. If 1 € Shareg,, (1) then

1 mi2

1 moo
M =

1 mnp2

Note that for Sys to be secure, mo; # mg; for all ¢ # j. Hence, V = M is a
Vandermonde matrix, and M = VF with V = M and F' = I. Clearly, Sys
is based on polynomial interpolation with f(z) = s+ bex and f(0) = s.
Conversely, if Sy is based on polynomial interpolation with f such that
f(0) = s then by Lemma 5.5.15, 1 € Shareg,, (1). [ |

The following is a corollary of Corollary 5.5.16.

Corollary 5.5.24 Let S be a 2-out-of-n threshold LSSS over a commutative
ring L. If S is based on polynomial interpolation with f such that f(0) = s
then S is homomorphic.

Over Zs and Z7, all 2-out-of-3 homomorphic threshold LSSSs are based
on polynomial interpolation with f such that f(0) = s. We conjecture the
following:

Conjecture 5.5.25 Let S be a 2-out-of-n threshold LSSS over a commuta-
tive ring .. If S homomorphic then S is based on polynomial interpolation
with f such that f(0) =s.

5.5.1 Algorithm: isShamir(M,V]))

In this subsection, we present an algorithm to check whether a ¢+ 1-out-of-n
threshold linear secret sharing scheme is based on polynomial interpolation.
Let Syr = (K, M) be a t+1-out-of-n threshold LSSS over a field K with share
distribution matrix M. By Lemma 5.5.3, it suffices to check whether there
exist an n X (t+ 1) Vandermonde matrix V' and an invertible (t+1) x (t+1)
matrix F' such that M = V F. Naively, one could do the following:
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Algorithm 9 isShamir(M,V]])
for all n x (t + 1) Vandermonde matrices V' do
for all (¢t + 1) x (t+ 1) matrices F' do
if M =VF then
return true
end if
end for
end for
return false

Note that M = V F only if the top t 4+ 1 rows of M are equal to the top
t + 1 rows of V multiplied by F'. It suffices therefore to check for each V'

whether M = VF with F =V | My oy

Algorithm 10 isShamir(M,V]])

for all n x (¢t + 1) Vandermonde matrices V' do
I V{I,l...,t+1 M, 11y
if M =V F then
return true
end if
end for

return false

The algorithm is implemented in the programs MultThreshold2_3Shamir. java
for multiplicative 2-out-of-3 threshold LSSSs and MultThreshold3_5Shamir. java
for multiplicative 3-out-of-5 threshold LSSSs. Both programs use the library
MultThresholdLib. java.

Output of the program MultThreshold2 3Shamir. java for Zs (runtime <
1 min):

Enter n: 5

Number of 3x2 2-out-o0f-3 multiplicative threshold LSSSs over ZZ_5: 192
Number of 3x2 2-out-of-3 multiplicative threshold LSSSs based on
polynomial interpolation over ZZ_5: 36

Number of 3x2 2-out-of-3 homomorphic threshold LSSSs over ZZ_5: 6
Number of 3x2 2-out-of-3 homomorphic threshold LSSSs based on
polynomial interpolation over ZZ_5: 6

Output of the program MultThreshold2 3Shamir. java for Z7 (runtime <
1 min):

Enter n: 7
Number of 3x2 2-out-of-3 multiplicative threshold LSSSs over ZZ_7: 1080
Number of 3x2 2-out-of-3 multiplicative threshold LSSSs based on
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polynomial interpolation over ZZ_7: 150

Number of 3x2 2-out-of-3 homomorphic threshold LSSSs over ZZ_7: 20
Number of 3x2 2-out-o0f-3 homomorphic threshold LSSSs based on
polynomial interpolation over ZZ_7: 20

Output of the program MultThreshold3_5Shamir.java for Z; (runtime =
2.5 hours):

Enter n: 7

Number of 5x3 3-out-of-5 multiplicative threshold LSSSs over ZZ_7: 418176
Number of 5x3 3-out-of-5 multiplicative threshold LSSSs based on
polynomial interpolation over ZZ_7: 524

Number of 5x3 3-out-of-5 homomorphic threshold LSSSs over ZZ_7: 1286
Number of 5x3 3-out-of-5 homomorphic threshold LSSSs based on

polynomial interpolation over ZZ_7: 68

5.6 Existence of other Multiplicative Threshold
Linear Secret Sharing Schemes

The output of programs MultThreshold2 _3Shamir.java and
MultThreshold3_5Shamir.java shows that only a small fraction of multi-
plicative (¢ + 1)-out-of-n threshold linear secret sharing schemes are based
on polynomial interpolation.

all(t+13-cut-ofn
threshold LE8Ss

(t+1)-out-of-n threshold
L388s based on

polynomial interpolation

7

(t+13-out-ofn threshold
L3335 based on
polynomial interpolation
with s = §0)

Figure 5.1: Venn diagram: (¢ + 1)-out-of-n threshold LSSSs

Example 5.6.1 Let K = Zs, and let M be the 3 x 2 share distribution
matrix

Let S be the 2-out-of-3 threshold LSSS defined by s = Mb. Note that S is
not homomorphic. Here, s; = s + by, so = s+ 2by, and s3 = 2s + 3b;.
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By Fact 2.6.5, for any a7, as € K, there exists an interpolation polyno-
mial f of degree 1 such that s; = f(«a1) and s3 = f(az). Further,

f(x) = (s+ b2)ro(x) + (s + 2b2)r1 (),

where ro(z) = 7=7%, and ri(z) = 7=-. Simplifying,
bo
flz)=s+ (201 — ag — ).

a1 — Q9
Clearly, for any ag € K, s3 # f(as).

Lemma 5.6.2 Let K be a field, and and let a 2-out-of-n threshold LSSS
S be defined by s = Mb with M € K"*2. Then S is based on polynomial

interpolation if and only if there exist aq, ..., an € K such that
1
min = (ma1(os — az) —mai(es — 1))
and 1

mi2 = (m12(ai - 052) - m22(05i - al))

a1 — Q9
for all 3 <i<n.

Proof. By Definition 5.5.1, § is based on polynomial interpolation if and
only if there exist aq,...,a, € K such that s; = f(a;) for all 1 < i < n.
Note that s; = m;1s + myebe for all 1 < ¢ < n. By Fact 2.6.5, for any
a1, a9 € K, there exists an interpolation polynomial f of degree 1 such that
s1 = f(aq) and sg = f(ag). Further,

f(x) = (m11s + migba)ro(z) + (Mma1s + maogba)ri(z),

where ro(z) = =74, and 71 (z) = 7=%-. Simplifying,
1
flz) = ((m11 — mo1)x + morag — my12)s
a1 — Q9
1
+ ((mig — mag)x + magar; — mi20)ba.
ap — Qg

Clearly, f(a;) = s; for 3 <i < n if and only if
1
a1 — Q9

mi1 = (mll(ai - 052) - m21(ai - al))

and

1
a1 — Q3

Mo = (m12(04i - 042) —maz(a; — 061))~
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Chapter 6

Conclusion

In this thesis, we have explained the mathematical background of share
computing protocols. In particular, we have explained linear secret sharing
schemes over fields and rings. We have explained the characterisation of
linear secret sharing schemes in terms of monotone span programs. Further,
we have characterised linear secret sharing schemes in terms of projections.
In particular, we have explained multiplicative linear secret sharing schemes.
Most linear secret sharing schemes are defined over fields. One goal of this
thesis was to generalise those definitions to rings where possible, and to
prove the impossibility of this otherwise.

The platform SHAREMIND, a virtual machine for privacy-preserving data
mining, is an example of an application that uses threshold linear secret shar-
ing schemes. In fact, most practical applications use threshold linear secret
sharing schemes. A goal of this thesis was to characterise threshold linear
secret sharing schemes, and in particular, threshold linear secret sharing
schemes with one share per miner. We have used this characterisation to
develop an algorithm to generate all (¢ 4+ 1)-out-of-n threshold linear secret
sharing schemes over a field Z,, for fixed n, t, and p. We have implemented
this algorithm for n = 5 and ¢ = 2, and for n = 3 and t = 1. One project
for the future would be to implement the algorithm efficiently - the current
implementation has a runtime of about 2.5 hours for 3-out-of-5 threshold
linear secret sharing schemes over Zr.

SHAREMIND uses a 3-out-of-3 threshold linear secret sharing scheme over
the ring Zg32 with one share per miner. We have explained the proof of
existence of (t + 1)-out-of-n threshold linear secret sharing schemes over
Zq32 with more than one share per miner and have proved the non-existence
of (t+1)-out-of-n threshold linear secret sharing schemes over Zys> with one
share per miner.

Shamir’s secret sharing scheme is the oldest (¢ + 1)-out-of-n threshold
linear secret sharing scheme over Z, with one share per miner. Only a small
fraction of threshold linear secret sharing schemes are generalised Shamir
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secret sharing schemes. We have characterised those for 2-out-of-n threshold
linear secret sharing schemes and have proved that this characterisation is
not valid for general (t+ 1)-out-of-n threshold linear secret sharing schemes.
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Uhissalastusskeemid iile
korpuste ja ringide

Magistrit66 (20 AP)
Katharina Kahrs
Restimee

Kaesolev magistritoo kéasitleb iihissalastusskeemide matemaatilisi alu-
seid. T60s pocratakse erilist tahelepanu tile korpuste ja ringide defineeritud
lineaarsetele iihissalatusskeemidele. Esmalt kirjeldame lineaarsete iihissalas-
tusskeemide ning monotoonsete maatriksprogrammide (monotone span pro-
grams) omavahelist vastavust. Jargnevalt kirjeldame lineaarseid iihissalastus-
skeeme projektsioonide terminites. Sealjuures poorame erilist tdhelepanu
multiplikatiivsetele lineaarsetele iihissalastusskeemidele. Kuna enamik li-
neaarsetest tthissalastusskeemidest on defineeritud iile korpuste, siis kaesoleva,
magistritoo tiheks eesmérgiks on voimaluse korral nende definitsioonide iil-
distamine ringidele voi siis selliste kontruktsioonide voimatuse toestamine.

Enamik praktilistest rakendustest kasutab lineaarseid lavisalastusskeeme.
Konkreetseks naiteks voib tuua privaatsust siilitava andmekaeve platvormi
SHAREMIND. Teiseks kaesoleva magistritoo eesmérgiks ongi selliste lavisa-
lastusskeemide kirjeldamine. Eriti péorame tahelepanu iihissalastusskeemide-
le, milles iga osapool saab iihe andmeosaku. Vastavaid kirjeldusi kasutasime
algoritmi loomiseks, mis genereerib koik lineaarsed (n, t)-lavisalastusskeemid
iile korpuse Z, fikseeritud parameetrite n, ¢ ja p jaoks. Oleme realiseerinud
selle algoritmi parameetrite n = 5 jat = 3 jan = 3 jat = 2 jaoks. Tulevikus
on plaanis oluliselt suurendada algoritmi efektiivsust: kaesoleval realisat-
sioonil kulub umbes 2,5 tundi koikide lineaarsete (5, 3)-ldvisalastusskeemide
leidmiseks iile Z~.

Kuna SHAREMIND kasutab tihissalastusskeemi, mis on defineeritud tle
ringi Zgs2 ning toimib ainult kolme osapoole korral, siis vaatlesime t6o0s
ildiste multiplikatiivsete n osapoolega ldvisalastusskeemide olemasolu ja
konstruktsioone. Tapsemalt néiitasime, et iile Zys2 ei eksiteeri (n, t)-ldvisalas-
tusskeeme, kus iga osapool saab iihe osaku.
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Shamiri iihissalastusskeem on kéige vanem lineaarne (n,t)-lavisalastus-
skeem tile Zj,, kus iga osapool saab iihe osaku. Ainult viike murdosa lavisalas-
tusskeemidest on Shamiri ithissalastusskeemid. T66s kirjeldame koiki selliste
(n, 2)-lavisalastusskeeme. See kirjeldus tugineb (n,2)-ldvisalastusskeemide
lihtsal ehitusel. Niitame, et sama kirjeldus ei kéi (n, t)- lavisalastusskeemide
kohta, mille ehitus on {ildjuhul oluliselt keerulisem.

Autor soovib tdnada oma juhendajat, kelle entusiasm ja pohjalikkus olid
vaartuslikuks panuseks kéesoleva magistritéo valmisel.
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