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1 Introduction

1.1 Background

This thesis introduces the methods which are used for measuring the similarity

between documents. The document similarity measures are an important topic

in information retrieval and in document classification systems. Finding similar

documents from a document corpus is applicable in many different fields - web

search engines, news aggregation services, advertising systems et cetera. An im-

portant aspect for a document similarity measure is, that the human opinion of

the similarity should concur with the score of similarity. The problem of semantic

similarity arises. The standard way to find similarity between documents is to

compare the co-occurrence of words in them. Thus it is possible, that two docu-

ments which are contextually very similar, but to dot contain the same words, are

marked dissimilar by the standard document similarity measures. The goal of the

semantic similarity measures is to take into account the context of the documents

and use this information for measuring the similarity.

The goal of this thesis is to first give an overview of different methods which are

used for standard and for semantic document similarity. The second goal is to

experiment with the document similarity measures on a news portal dataset and

to explore whether we can find some interesting properties of those measures.

The motivation for the topic originates from an idea to create a new advertising

network which is able to target advertisements better than the networks currently

in the market. The goal was to analyse whether we could find a simple, intuitive,

yet effective method for finding the non-trivial similarity between documents.

1.2 Structure

We can divide the thesis roughly into two parts. In the first part we are deal-

ing with document similarity measures and theoretical backgrounds for analysing

user behaviour on website. We give an overview of different document similarity

measures and analyse their performance. We also propose a new method for find-

ing similar documents efficiently from a large document corpus by analysing the

associations between concepts in the documents. Although our main focus is to
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find non-trivially similar documents from a large document corpus, we also cover

the generally used methods for detecting document similarity. We also give an

overview of the methods which we are going to use in the case study to analyse

user behaviour.

In the second part of our work, we analyse the performance of different similarity

measures and user behaviour using the dataset of an Estonian daily news provider

Postimees. In the case study one of our goals is to find the best performing mea-

sure or combinations of measures for finding similarity between two news stories.

Another goal is to understand the user behaviour and to see, whether we can find

interesting navigation patterns from the web access logs.

The motivation for analysing user behaviour is that it enables making better news

recommendations for user given the browsing history. Combining these results en-

ables the website to offer user behavioural- and content-based advertising on the

website. The general approach is to analyse how users interest changes during the

session of news browsing.

1.3 Problem statement

First of all it is important to make the distinction between the standard similarity

and non-trivial similarity between documents. If we are finding documents similar-

ity by using words which they contain, then it might be that we will have a small

similarity score between two documents, though they may actually be contextually

very similar. This might be the case when two documents contain different words,

but their contextual meaning is more or less the same.

A quite straightforward solution is to find how many frequent words are similar

in respective documents. For the non-trivial similarity we are trying to find docu-

ments which are similar on more abstract level. Let us illustrate this with a small

toy example. Consider a query document A and document corpus B,C and D.

Consider a similarity score s(x, y) which represents the similarity between these

two documents. Suppose that the contents of the documents is as given in the

following table.
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A Coffee is a brewed drink prepared from roasted seeds, called coffee beans,

of the coffee plant.

B Tea is the agricultural product of the leaves, leaf buds, and internodes of

various cultivars and sub-varieties of the Camellia sinensis plant, pro-

cessed and cured using various methods.

C Jack and John love to drink a cup of coffee. Jack knows everything about

coffee - from growing the coffee plant to roasting the seeds and brewing

the coffee.

D Peter and Mary love to drink a cup of tea every morning. They are even

growing their own Camellia sinensis plants in their backyard.

For a standard document similarity matching the most similar document to

A would definitely be C, as they have many words in common (‘coffee’, ‘seed’,

‘brew’, ‘drink’ et cetera). We see that all the documents are similar, but when

using standard similarity scores, it is probable that s(A,B) would score less than

we would intuitively think, as these two documents do not contain many words in

common, though their context is similar. Our goal is to give a significantly high

score for s(A,B) and s(A,C), as these documents are contextually very similar.

The second problem which we are dealing with, is user behaviour on news website.

Now, again, let us make a toy example to illustrate what knowledge we are trying

to mine from the sequential document reading. The content of the documents is

taken from New York Times headlines. Consider, that user visits documents in the

following sequence A1 → A2 → A3 → A4. Suppose that the documents contain

the information:

A1 Libya Wages Counterattack on Rebels, and Battles Rage.

A2 U.S. Freezes a Record $30 Billion in Libyan Assets.

A3 In Libya Capital, Long Bread Lines and Barricades.

A4 Egypt Reopens Museums and Historical Sites.

It is not hard to find the similarity between the first three documents A1 → A3.

On the other hand, for traditional term based similarity measure we would give a

very low score for similarity between A4 and other documents. For the non-trivial

document similarity, we try to see the associations between these documents, which
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may have lead the reader from A3 → A4. Intuitively we can think, that the user

was reading document A3 and that reminded him or her about the riot in Egypt

and lead to the article A4. Our goal here would be to get a significant score for

A1 and A4).
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2 Life-Cycle of Finding Document Similarity

In the following we will give an overview of the steps needed for finding the similar

documents. In brief, the steps are:

1. Defining similarity measure.

2. Extracting important content of the document.

3. Document preprocessing.

4. Storing the features of documents.

5. Computing document similarity matrix.

6. Clustering/Analysing performance of different measures.

As follows, we are going to give a quick overview of these steps putting more

emphasis on Step 1.

2.1 Extracting Content

Let us consider a system where we need to aggregate information from various

internet web pages. When we are dealing with just a couple of different websites,

it is not hard to create custom content extraction parsers, but extracting content

dynamically from differently structured HTML documents is not a trivial task.

A good example of such setting might be a news surveillance system, where we

get news stories from very many different news providers in HTML format. In

this case we need to somehow dynamically filter out the noise (i.e advertisements,

comments, embedded videos, social networking boxes etc) and extract the news

story.

There are various approaches for content extraction: statistical, information theo-

retical, using structural analysis [LH02, CYWM03] et cetera. One tool for content

extraction is Readability - developed by a software company Arc90. There are

implementations of Readability’s algorithm in different programming languages

available in the World Wide Web [ABC+09].
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2.2 Document Preprocessing

In the following our goal is not to go into technical details of specific methods but

to give an overview. We will cover different ways for preprocessing documents.

Named Entity Recognition. Named entity recognition (NER) is a technique

for finding different names (e.g. locations, persons, dates et cetera) from natural

text. In information retrieval the concept of using named entity recognition and its

effectiveness in queries is for instance discussed in [GXCL09]. While preprocessing

we are concatenating the named entities with an underscore. For the sake of clarity,

let us consider a sentence

Steve Jobs is the co-founder and chief executive officer of Apple Inc

then after preprocessing we get

Steve Jobs is the co-founder and chief executive officer of Apple Inc.

Named entity recognition is a very good way for reducing noise and extracting

useful features from document data. The problem with NER is that usually it is

computationally expensive and thus the preprocessing of documents takes longer.

Filtering Stop Words. The term stop words which describes the most fre-

quently used words was proposed by Luhn in 1958 [Luh58]. Stop words are the

most commonly used words and they are frequently filtered out from text in in-

formation retrieval tasks. When removing the stop words we get rid of noise and

we also save space when storing documents. Although, filtering out stop words

may in some cases cause information loss, e.g. the band name The Who, a citation

from Hamlet To be or not to be et cetera. One way to reduce the information loss

is by removing the stopwords after identifying the named entities.

Lemmatization and Stemming. The difference between stemming and lemma-

tization is that stemming is a heuristic process of cutting off the ends of words in

the hope of getting correct lemma for most of the cases, whereas lemmatization
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uses the vocabulary and morphological analysis of words to get the base or dictio-

nary form of the word. There are various word stemmers [Por80] available and for

English text one of the most used is the Porter stemmer.

In information retrieval, stemming and also lemmatization both lower the preci-

sion and increase the recall of a query. Lemmatization and stemming can be used

to make the level of the word meaning more abstract.

Normalization. The main point of normalization is to convert all terms which

mean the same thing, but can be written in different forms (e.g. USA and U.S.A)

into the same form. In the normalization we are using the following techniques:

• Remove all punctuations in the named entities.

• Lowercase all words in the beginning of the sentence.

• Remove all special characters in the text.

These methods are good because of the following aspects:

• They are easy to apply.

• They handle most of the cases.

• They are language independent.

More technical details about text normalization are given in the handbook [MRS08].

2.3 Document similarity

There are different ways for finding similarity between documents. We will give an

overview of some of the popular methods used for finding the document similarity

score.

2.3.1 Notation

Let D{d1, d2, ..., dn} be a set of documents (document corpus). Then we use Si ⊂ di

as a set of sentences of the document di. We treat each sentence sj ∈ Si as a

sequence of terms sj = (t1, ..., tm). By the length of document d we denote |d| as
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the number of words in this document.

For a sentence Si a term pair Tp = {t1, t2} ⊂ Si is a subset of the sentence Si. Let

ws denote the size of a window. Let us denote the term pair of a window

Tp(ws) = {tj, tk} ⊂ Si : |k − j| ≤ ws ,

as all pairwise combinations of words, which belong to sentence Si and are at most

ws words apart from each other.

2.3.2 Similarity Measures

In the following we will present measures which are commonly used for calculating

the similarity between documents.

Document-Term Vector. Before going into details of similarity measures, let

us denote the document-term vector as:

dt(d) = (w1, w2, ..., wn)

where wi is the weight of a term ti in document d. If the term does not exists in

this document, its weight is 0. There are a total of n weights where n is the total

number of different terms in the document corpus. Already for a small corpora

these vectors are sparse, so in terms of memory consumption, it is reasonable to

store only the weights which are greater than zero.

Tf-Idf Measure. Tf-Idf measure is a popular method for extracting relevant

terms from documents. Let nt(d) denote the number of occurrences of given term

t in document d. Then the term frequency for term t and document d is given as:

tf(t, d) =
nt(d)

|d|
. (1)

A natural method for extracting important terms from a document is to reverse

order the terms by their frequency. The drawback of simply measuring the im-

portance by frequency is the fact that, there are words which appear frequently in
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many documents (e.g. ‘many’, ‘going’, ‘meeting’, ‘yourself’ etc). To overcome this

issue, we can measure the inverse document frequency idf:

idf(t) = log
|D|

|{Dj : Dj ∈ D ∧ t ∈ Dj}|
, (2)

where the numerator is the number of documents in the corpus and the denomina-

tor is the number of documents which contain the term t. The inverse document

frequency measures the “rareness” of the term with regards to the corpora. If the

term occurs in every document, then idf(t) = 0 and if the document appears in

only 1 document, then idf(t) = log(D), which is maximal.

We get the tf-idf value by computing the product between tf and idf:

tf-idf(t, d) = tf(t, d) · idf(t) . (3)

It gives the highest value, when the term is frequent in the document and not

frequent in the rest of the corpus. Thus, the higher the tf-idf, the more document

specific the terms are. For more information and explanations about tf-idf can be

found in the handbook [MRS08].

2.3.3 Cosine Similarity

Cosine similarity is a measure of similarity between two vectors by measuring the

angle between them. For documents the cosine similarity measure is used to find

the angle between two document-term vectors. The angle between these vectors

shows how similar these documents are - the range of values for this measure is

between 0 and 1, where 0 means that the two vectors are orthogonal and 1 means

that the two vectors point to the same direction. Given two vectors x and y, the

cosine similarity between them is defined as:

cos(x,y) =
x · y
‖x‖‖y‖

,

where · denotes the dot product between vectors x and y, and ‖x‖ is the Euclidean

norm of the vector x.
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2.3.4 Latent Semantic Indexing

Latent semantic indexing (LSI) is a technique which uses singular value decom-

position (SVD) to find patterns in the relationships between terms or concepts in

unstructured text. The goal of latent semantic indexing is to incorporate more

semantic structure into query of document as individual terms provide unreliable

evidence about the context and meaning of the document. In general the idea is

to use SVD for generating “semantic” space, where these terms and documents

which are closely associated are near to each other [DDL+90]. LSI overcomes some

of the biggest problems of Boolean keyword queries - the issue with synonymy and

polysemy. The synonymy are different words which mean the same thing and plol-

ysemy are the words which have several different meanings. It is fundamentally

important, as people use surprisingly great variety of words to refer to the same

thing [FLGD87].

For any matrix M ∈ Rm×n it is possible to express M as

M = UΣVT , (4)

where U is m ×m real or complex unitary matrix, VT is n × n real or complex

unitary matrix and Σ is m × n diagonal matrix with non-negative real numbers.

The values on the diagonal of Σ are known as singular values of M and by con-

vention are constructed to be ordered in decreasing magnitude.

Let us consider a table A which has m rows, n columns and contains information

of the occurrences of m different terms in n documents. Initially, the constructed

matrix holds the term frequencies with respect to certain term and document. It is

also possible to apply different global and local weighting functions to the matrix.

The singular value matrix Σ can be seen as mapping between U and VT.

The main idea of LSI is the dimension reduction

M ≈ M̂ = U′Σ′ (V′)
T
, (5)

where k � n, matrices U′, Σ′ and V′T are m × k, k × k and k × n dimensional,

respectively. The dimensionality reduction of the singular matrix Σ is the key for

mapping together the words which are associated with the same concepts. The
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exact number of dimensions to choose is still a research problem, but values from

200-300 has shown good results on datasets [Bra08], so we will use 250 as the

golden average. By the reduction we are creating a new space, where U′ and V′T

describe the terms and documents, respectively, in this space. The singular values

Σ′ describe the amount of variation along the axis in this space. In matrix U′

the rows define a vector for every term which describes the terms relation to the

reduced concepts space and the columns represent the strongest concepts which

were extracted by singular value decomposition. In the matrix V′T the columns

represent the documents in the reduced semantic space and each row shows the

weights of the documents in the reduced space. Term similarity scores produced

by LSI are high for words which have similar meaning, so the higher the score, the

more synonymous words are.

For queries the resulting matrices are used as follows. Consider a query q which

is a m dimensional vector, containing the weights of terms of the query. Then we

can represent the vector in the reduced space as follows:

q̂ = qTU′Σ′
−1

.

Now the query vector can be compared to all the other document vectors given in

V′ by using cosine or some other similarity measure.

In depth analysis and examples of using LSI in terms of intelligent information

retrieval is given in [BDO+95].
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3 Similarity and Concept Associations

Finding similar documents using the concept associations consists of the following

steps:

1. Preprocessing of the documents.

2. Extracting the background graph.

3. Extracting specific features of a document.

4. Calculating pairwise distances.

5. Retrieving the most similar documents.

There are different possibilities for finding features from document. The features

of a specific document may be the words, combinations of words or any other data

which is derived from the specific document. Usually the extracted features of a

document are words and a popular method is to store them in a vector. Then

the whole document corpus can be held in a document-term matrix, where each

row corresponds to a term and each column corresponds to a document. The

limitations of this method is, that some specific co-occurrence information is lost,

as the document is represented as a vector v

v = (v1, v2, ..., vn) ,

where vi is the weight (e.g. tf-idf, frequency) of respective term in the docu-

ment. As described before, there are methods which make an assumption that

words which appear often together are most probably semantically similar. Our

goal is to represent these connections explicitly and generate them using the doc-

ument corpora. In general, our assumption is that words in one sentence are more

strongly related than words in different sentences.

More formally we propose a method for describing the document corpora as a

background graph G = (V,E), where V is a set of vertices belonging to G and

E is the set of edges which connect two vertices by a certain weight. The ver-

tices in the graph represent concepts given in the corpora. The weighted edge
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between two vertices describes how strongly these two concepts are generally con-

nected. Such a graph gives us opportunity to apply different graph operations.

For instance we can find shortest path from arbitrary vertex vx to vertex vy, which

describes the most commonly made logical association path between these con-

cepts. As an illustrative example, consider two concepts ‘synthetic rubber’ and

‘car’. A logical connection between these concepts would be for instance ‘syn-

thetic rubber’→‘tire’→‘car’, meaning that they are connected to each other via

concept ‘tire’.

The goal of creating such graph is to model the different domains of the document

corpus. For more certain example, consider a document corpora of news stories.

Our goal is to model both (a) the associations between different news stories in

certain category; and (b) the associations between different categories.

The concept graph gives us a possibility to add domain specific information to doc-

ument. In information retrieval, this might be useful for query expansion, as the

query may contain too specific information. Using the background graph gives the

opportunity to involve more general information to query-document matching.

The following method we are proposing is a generalisation of finding document

similarity by using a phrase indexing graph model proposed by Hammouda and

Kamel [HK04]. The idea of phrase indexing graph model is to store phrases found

in documents into a graph and then find document similarity by analysing the

paths shared by documents. In proposed method, the weighted combination of

phrase similarity and single-term similarity was used.

3.1 Similarity with Background Information

In the following we are proposing a method for finding similar documents by

using similar concept associations in the documents. We will describe how to

find the similarity between documents by using background information of the

domain. The background information is represented as graph and our goal is to

use general associations between words to detect the non-trivial similarity between

the documents.
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Document preprocessing. Preprocessing of documents leads to less noise and

computational time during the next steps. This step takes unprocessed HTML files

as input and produces output which consists of sentences, separated by specific

character pattern (e.g. ”. ”). For removing some highly probable noise we will

have some constraints for terms (a) terms may contain only characters A − Z;

and (b) terms must be at least 3 characters long. The more in-depth discussion of

document preprocessing was in Section 2.2.

Extract background graph of the documents. The method of background

graph extraction uses the preprocessed documents and list of term pairs with

scores to produce a graph which incorporates background information over the

whole document corpora. As we will see later in more detail, we can create the

pairs between the terms which are in a certain sized window or between terms

which appear in the same sentence. For storing the graph, we used the trivial

graph format, where the first two columns defined the nodes and the third column

defined the edge weight.

Extract features specific to a document. Our goal is to extract the features

which are specific to a certain document. We present two approaches: extracting

terms by traditional tf-idf measure and extracting terms by using document specific

concept associations [SM83].

Calculate pairwise distances of documents. The goal of this method is to

calculate the distances between all the documents. For each of the document pairs,

this method takes the document-term vectors obtained in the previous step as an

input. Depending on the similarity measures, these vectors are used to calculate

the document similarity value between two documents. Whether the background

graph is incorporated in the similarity calculations depends on the specific measure.

Retrieve the most similar documents. Consider that we have a document

corpus D as defined before. Then the document similarity vector obtained from
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previous step for a document d is

S(d) = (s(d, d1), ..., s(d, dn)) ,

where s(x, y) is a document similarity measure. Different methods for retrieving

similar documents are available: (a) taking top-N most similar documents; (b) re-

trieving documents for which similarity is above some pre-defined threshold; and

(c) clustering documents and treating a cluster of documents as related documents.

Error sensitivity of all steps. One of the most significant part of the methods

is document preprocessing. This is a good way for removing noise in the begin-

ning of the cycle. Good preprocessing of documents leads to less-noisy background

graph and reduces the computational time.

For the background graph extraction, it is reasonable to test different window size

parameters - the idea here can be related to the generalization of the model. If

the window size is very small, this leads to overfitting and if the window size is

too big, the model becomes too general.

The feature extraction step of specific document generally depends on the prepro-

cessing and these methods are not very sensitive.

There are different parameters which we can tune when calculating the similarity

between two documents. Definitely this step is error prone to unreasonable pa-

rameter selection.

There might arise a question, what is the need for the background information

graph. Due to the fact that we are extracting document specific associations, the

probability that two documents share a specific association is not very high. On

the other hand, if the documents are similar, they are close to each other in the

background graph with high probability. The idea is illustrated in Figure 1.

3.2 Extracting Background Information

The idea of the background graph is to model the associations between concepts.

Moreover, our goal is to emphasize connections between these concepts which are

common (e.g. association between ‘car’-‘tachometer’ is more likely than ‘airplane’-
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Figure 1: The illustration of two documents mapped to the background graph. The
blue nodes represent the nodes on the background graph. Green and red nodes
describe the important terms given in two different documents. The documents
can be also visually distinguish, as the left “column” represents one document,
the central “column” represents the background graph and the right “column” the
second document. Though in this extreme case the documents do not share any
common terms, they may still might be contextually very similar.

‘tachometer’ et cetera) and thus represent the background information.

The de-facto standard in information retrieval community for analysing connec-

tions between terms in documents is log-likelihood ratio test, which is a parametric

statistical test [Dun93]. In terms of the background graph, we want associations

which depend on each other to have higher weights than the associations which

describe weaker dependence between the concepts.

There are two commonly used alternatives to test the independence between two

events - the χ2 and the log-likelihood ratio test. The idea of log-likelihood ratio

test is to express how many times more likely the data is from one model than from

the alternative model. In our setting, we are using the multinomial distribution.

In the ratio, for the null model we expect that the two events are independent

and for the alternative model is the two events to be dependent. We can create

a parallel with p-value, which measures the probability that we would get results

at least that extreme as observed assuming that the null model holds. In the log-

likelihood ratio, we do something similar - we take the ratio between the concrete

model and null model, basically testing how much more likely is the parametrized
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model than the null model.

The χ2-test is a test which is used to analyse the co-occurrence of two events.

The problem with the χ2-test is that it is based on several assumptions, which

frequently do not hold in textual analysis. It is explained in more depth in the

article [Dun93].

Let us consider the two potentially related terms or events A and B. Then we can

observe the contingency table K

A ¬A
B k11 k12

¬B k21 k22

where k11 is the count of events where A and B occur together, k12 is the count of

events where B occurs, but not A, k21 is the count of events where A occurs, but

not B, k22 is the count of events where neither one of the events A or B occur.

Assume that we know the K = (k11, k12, k21, k22) for two terms ti and tj. Let

us denote a likelihood function L(ω; k), where ω is a configuration of concrete

model from parameter space Ω and k denotes the observations. The likelihood

function describes the probability of experimental outcome of k from a model with

parameters ω. Then we can define ratio

λ =
maxω∈Ω L (ω; k)

maxω∈Ω0 L (ω; k)
,

where Ω0 denotes the null model parameter space and Ω denotes the concrete

parameters of hypothesis which are being tested. For our case the null hypothesis

is that events A and B occur independently and the alternative model is that they

are statistically dependent. So we can state our null hypothesis Hyp0 that A and

B are independent, so p(A|B) = p(A|¬B) = p(A) and thus

A ¬A
B q1q2 q2(1− q1)

¬B q1(1− q2) (1− q1)(1− q2)

where

q = (q1, q2).

Hyp1 is that two events A and B are not independent thus we have
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A ¬A
B p11 p12

¬B p21 p22

where

Pi = p1i, p2i ,

are the parameters of the model which describe the probabilities for each of the

kij events. Let us denote

Ki = k1i, k2i ,

which contains the elements of the ith row of the contingency table. Now we can

give the likelihood ratio

λ =
maxQ L (Q,Q;K1, K2)

maxP1,P2 L (P1, P2;K1, K2)
, (6)

where the function L is the parametrized multinomial distribution

L(P1, P2;K1, K2) =

(
k11 + k12 + k21 + k22

k11, k12, k21, k22

)
pk1111 p

k12
12 p

k21
21 p

k22
22 . (7)

Note that

L(Q,Q;K1, K2) =

(
k11 + k12 + k21 + k22

k11, k12, k21, k22

)
(q1q2)k11 [q2(1−q1)]k12 [q1(1−q2)]k21 [(1−q1)(1−q2)]k22 .

Observe that the multinomial coefficients cancel out and after optimization we get

λ = 2·
∑
k∈K

k·(H(K)−H({k11 + k12, k21 + k22})−H({k11 + k21, k12 + k22})) , (8)

where H(X) is the sum of Shannon entropies

H(X) = −
n∑
i=1

p(xi) log p(xi)) . (9)

Using the measures and previously defined document corpusD, we can generate

the background graph. The generation of the background graph contains two

important steps:
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• We pair the words which fit in a certain window or occur in the same sentence.

• We calculate the log-likelihood measure for any extracted pair.

When creating term pairs, we need to define a window or some other constraint,

in which we combine the words pairwise. Assuming that words co-occurring in the

same sentence are related makes it reasonable to pair words within sentences. A

property of the log-likelihood measure is, that when storing the data wisely, we

can calculate the edges of the weights only when we need them.

When calculating log-likelihood values we need to decide, whether we want to

calculate the term co-occurrence in terms of sentences, documents or some other

units. This means, that we have to create new contingency table K with respect

to chosen unit. The case study shows that in practice using the sentence level

measure the graph is more similar to our goal than when using document level

measure. In more detail this can be read in Section 5.5.

Given the document corpus D = {d1, ..., dn}. Let us define the two neighbour sets

NS(t) = {ti : {ti, t} ∈ sj},

ND(t) = {di : t ∈ dj},

where the set NS contains all terms with the parent sentence which contains term

t and the set ND contains all the parent documents of term t. Using these sets

give us convenient way to calculate the values k11, k12, k21, k22 for the log-likelihood

measure. Let us consider that we want to calculate the log-likelihood for term pairs

ti and tj. We can express the values of kij as follows:

k11 = |ND(ti) ∩ND(tj)|

k12 = |ND(ti) \ND(tj)|

k21 = |ND (tj) \ND(ti)|

k22 = |ND \ (ND(ti) ∪ND(tj)) |.
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3.3 Tpf-Idf-Tpu Measure

When generating background information we weigh the co-occurring term pairs

by taking into account the global occurrences of terms. For finding document

specific associations we propose using the tpf-idf-tpu measure, where tpf stands

for term pair frequency, tpu stands for term pair uncorrelation [Hyn10] and idf is

inverse document frequency. We want to use the measure for extracting associ-

ations between concepts which are specific to a certain document. The value of

the measure should represent the novelty of the association with respect to the

document corpus. When using these term pairs as document features when calcu-

lating similarity between two documents, we try to pair documents which create

associations between similar concepts.

As follows, we will give an overview of the different components which give us an

opportunity to score these defined term pairs.

3.3.1 Term Pair Frequency and Inverse Document Frequency

Let us consider document d, then tpf is defined as the relative frequency of sen-

tences which contain term pair Tp:

tpf (Tp, d) =
|{s ∈ d : Tp ⊂ s}|
|{s ∈ d}|

.

The inverse document frequency idf of term pair Tp is the logarithm of the inverse

of the relative number of documents in the given collection C that contain both

terms in the same sentence:

idf (Tp) = log
|C|

|{d ∈ C : ∃s ∈ d : Tp ⊂ s}|
.

By finding the product of tpf and idf we can define the tpf-idf measure:

tpf-idf(Tp, d) = tpf(Tp, d) · idf(Tp) ,

which scores high these term pairs which are frequent in the specific document

and not frequent in the whole document collection.
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3.3.2 Term Pair Uncorrelation

Considering a term pair Tp it is probable that the term pair is not novel and not

interesting if it satisfies one of the following conditions:

1. Term t1 occurs almost always with term t2.

2. Terms t1 and t2 occur in the same set of documents.

3. Occurrence of term t1 in different documents is very high.

4. Occurrence of term t2 in different documents is extremely low.

The goal of the tpu measure is to give lower score of these term pairs, for which the

elements satisfy these conditions. Let r(v|u), r(u|v) to denote the relative amounts

of a term pair Tp = (u, v), such that:

r(v|u) =
|{d ∈ D : ∃s ∈ d : u, v ⊂ s}|

|{d ∈ D|v ∈ d}|
,

r(u|v) =
|{d ∈ D : ∃s ∈ d : u, v ⊂ s}|

|{d ∈ D|u ∈ d}|
.

Now we can define tpu:

tpu (Tp) = γ −max(r(u|v), r(v|u)),

where γ ≥ 1 is used to weight the importance of the tpu component.

To illustrate how the measure works, in Table 1 we can see term pairs which had a

high or low scores on the Postimees corpora. The first row represents the condition

where one of the terms almost always co-occurs with the other. As Marju Länik is

Estonian singer and the term a is laulja (singer), due to this, almost always when

the term b occurs also term a occurs. On the second row we see the case where

the number of documents the term b occurs is very small. On the third row we

see an interesting example of two words hitt pakkett (hit package) and lisa au hind

(extra award) which are words which occur roughly in the same set of documents.

For the fourth example, the term a occurs almost always with the term b.

As follows the terms in the table, for which the condition is marked as N/A are
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Term a Term b Tpu Score r(a|b) r(b|a) Condition

laulja länikult 1.0 0.0 1.0 1
eeter pabermärkmed 1.0 0.001 1.0 4
hitt pakett lisa au hind 1.0 1.0 0.5 2
vahipataljonis üksik 1.0 1.0 0.01 1
kultuuri maja tipp hetk 1.99 0.01 0.01 N/A
muusika prantslane 2.0 0.0 0.0 N/A
erakonna kaaslane kontsert 2.0 0.0 0.0 N/A
järjekord kostüümide 1.98 0.0 0.02 N/A

Table 1: Examples of term pairs with high and low tpu scores. The first four
examples are term pairs with low tpu scores and the last four are examples with
high tpu score.

term pairs which have scored high on tpu. Most of these words are frequently

used, but rarely occur together. And interesting example is the third positive

example where term a is erakonna kaaslane (political party companion) and term

b is kontsert (concert), which rarely occur in the same documents.

3.3.3 Tpf-Idf-Tpu

Using the results we can now define the tpf-idf-tpu measure:

tpf-idf-tpu (Tp) = tpf (Tp)
w1 · idf (Tp)

w2 · tpu (Tp)
w3 , (10)

where w = {w1, w2, w3} is a weight vector initialized at 1. The goal of this measure

is to describe the novelty and interestingness of given term pair.
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3.4 Finding Document Similarity

Consider we have the background information graph which is generated as de-

scribed in 3.2. In the following we will give different measures for finding the

similarity between two documents. The measures are later validated in the case

study, where we benchmark the methods in finding similar documents. Our gen-

eral idea is to see how far the two documents are from each other in terms of the

background information graph.

3.4.1 Formulation

Let us give a mathematical formulation of the problem. Consider a document

corpus C and two documents D1 ∈ C and D2 ∈ C. We are given three graphs

B = (V,E,W ), G1 = (V1, E1) and G2 = (V2, E2), where V, Vi are the set of vertices,

E,Ei is the set of edges, W = {wi|wi ∈ R, i ∈ N} is the set of association weights,

B is the background information graph and G1, G2 are the important associations

graphs for documents D1 and D2, respectively.

Our goal is to determine the distance between these two documents by using the

document graphs G1 and G2 and the background graph.

3.4.2 Average Distance

One way for calculating the distance between two sub-graphs is to find the average

shortest path for each node in the background graph. So we can define the distance

between the documents D1 and D2

d(D1, D2) =
1

|V1||V2|
∑

u∈V1, v∈V2

shortest-path(u, v) ,

where shortest path is found from every vertex in V1 to any vertex in V2.

The problem with the proposed measure is, that it does not take into account the

weights of the edges. It would be reasonable to take into account the association

strength between terms. By now we have used edge weights for which larger weight

refers to a stronger connection than lower weight. For applying common shortest
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path algorithms, we reverse the edge weights by

W =

{
1

wi
, i ∈ {1...n}

}
.

3.4.3 Neighbourhood Similarity

Let us consider a graph G = (V,E), where V is a set of vertices and E is a set

of edges. The complexity of finding the shortest path between two vertices in G

is Θ(|V |3). So it makes it reasonable to analyse the similarity of the expansion of

G1 and G2 in terms of the background graph. By expansion we mean, that we get

the set of vertices N1(G1) by walking away n steps from all the nodes of sub-graph

G1. In other terms we expand from the sub-graph and include extra vertices from

the background B. Mathematically we can formulate this as:

N1(W ) = {v ∈ V : ∃u ∈ W : (u, v) ∈ E} , (11)

Ni(W ) = {v ∈ V : ∃u ∈ Ni−1(W ) : (u, v) ∈ E} .

We can iterate in breath-first manner by first finding the union and then applying

the formula again. As an example, let us consider we want the two step neighbour-

hood of documents D1 and D2. First we apply (11) getting N1(D1) and N1(D2).

Then by combining N1(D1)∪ V1 and N1(D2)∪ V2 and applying the respective for-

mulas again, we get the two step neighbourhood et cetera. The illustration of the

neighbour expansion can be seen on Figure 2a. Now the similarity score between

document D1 and D2 can be calculated as the Jaccard coefficient

J(D1, D2) =
|N1(D1) ∩N1(D2)|
|N1(D1) ∪N1(D2)|

, (12)

which is the relative overlap of the neighbourhoods of the two documents.

Observe, that in the measure we are not using the originally overlapping terms

between documents. Let us denote the neighbourhood with features similarity

measure

JF (D1, D2) =
|(N1(D1) ∩N1(D2)) ∪ (D1 ∩D2)|
|(N1(D1) ∪N1(D2)) ∪ (D1 ∪D2)|

, (13)
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Figure 2: Consider document D contains only term A. Then the blue nodes are
N1(D) and the green nodes are N2(D). The gray nodes denote the nodes which
are not included to the Ni(D) due to the fact that the edge weight is less than
ε = 0.30.

which also takes into account the overlap of the features which were originally in

the documents D1 and D2.

Proposed similarity measures suffer under the problem that we actually expand in

all directions of the graph, which means, that two documents may be close to each

other, but if we have nodes with very high degree, the similarity score is tampered.

This is due to the fact, that we may have a word which occurs together with very

many words, but has very low log-likelihood ratio with most of the terms. When

setting threshold for the minimum edge weight, we expect stronger connections

between words, and thus eliminate a large part of the noise.

We can overcome the problem by defining the weighted neighbourhood similarity

score for which the expansion rule is

N1(W, ε) = {v ∈ V : ∃u ∈ W : (u, v) ∈ E,W(u,v) ≥ ε} ,

Ni(W, ε) = {v ∈ V : ∃u ∈ Ni(W ) : (u, v) ∈ E,Ni(W )(u,v) ≥ ε} .
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Figure 3: Extending the document feature vectors from background, where T (Di)
are the original features of the document and N1(Di) is the corresponding one step
neighbourhood.

The illustration for this expansion rule can be found in Figure 2b. Notice that in

this case we are using the original edge weights, not the reversed ones.

3.4.4 Extended Cosine Measure

Another way for comparing documents using the background graph and cosine

measure, is to first append context information to documents from the background

graph G for which we have normalized weights to the range [0, 1]. Consider that

we want to find similarity between document D1 and D2. First we extract top-n

tf-idf terms with their weights T (D1), T (D2) from D1 and D2. Now our goal is to

add some contextual information to documents D1 and D2 from the background

graph G. Thus we take all the first level neighbours of N1(D1) and N1(D2) from

graph G and add as features to the documents D1 and D2, where the weights of

the added terms are the weights of the connecting edges. The idea is illustrated

on Figure 3. Then we calculate the cosine similarity measure between these two

extended document feature vectors as given before in subsection 2.3.3.
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3.4.5 Voltage Distance

The motivation for the voltage distance measure is to give weight to the neighbour-

ing nodes which are shared by two documents. The idea is a simplified version of

graph interpretation as electrical networks and center-piece sub-graphs [FMT04,

TF06]. We will represent a graph G = (V,E) as an electrical network, where the

weight of an edge e is given as C(e). In the electrical network interpretation edge

e represents a resistor with conductance C(e).

Consider that we apply voltage of +x to a node s, and ground (0 volts) on the

node t. Let I(u, v) denote the current flow from u to v and let V (u) denote the

voltage at node u. As follows, we have two laws, Ohm’s law:

∀u, v : I(u, v) = C(u, v)(V (u)− V (v)) = C(u, v)V (u)− C(u, v)V (v) ,

and Kirchhoff’s current law:

∀ 6= s, t :
∑
u

I(u, v) = 0 .

It is easy to see, that by combining these laws, we will get a linear system which

solution determines all the voltages and currents:

V (u) =
∑
v

C(u, v)V (v)

C(u)
,

where C(u) =
∑

v C(u, v) is the total conductance of the edges which are ad-

jacent to node u. The only exceptions are V (s) = x and V (t) = 0. It is also

proposed [PF03] to use the universal sink node z, which is grounded V (z) = 0 and

is connected to every node u in the graph G, such that it’s conductance is given

as

C(u, z) = α
∑
w 6=z

C(u,w) ,

where α > 0. We follow [FMT04] and use α = 1. The idea is that the universal sink

penalizes the high degree nodes, by absorbing current, which flows through them

and through their neighbours. Now we can solve the system of linear equations
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using the least squares solver which gives us the voltages for all the nodes.

The given method can be also applied for many source and ground nodes, than we

just have to take s and t as sets of nodes and do the calculations based on that

information. Using these voltages we can calculate the sum over the voltages of

all the shared neighbours of documents D1 and D2∑
V (vi), vi ∈ N1(D1) ∩N1(D2) ,

which we will use as the similarity measure.

3.4.6 Fail Distance

Fail distance measure got his name due to the authors oversimplification of the

concept of voltage distance measure. The approach which we are going to introduce

intuitively handles the high or low degree node problems - we give less weight to

neighbour which comes from a very high degree node and on the other hand more

weight to the neighbour which comes from a low degree node. In addition to the

node degree we could also take into account the edge weights between the nodes.

For achieving this we treat the graph as a network, where we can give weights to

the nodes and then edges behave as resistors when transferring the weight from one

node to another. Before going into details, assume that for the background graph

G = (V,E,W ) we have the edge weights as their inverse W = { 1
wi

: wi ∈ W1}. As

given before, the vertices which belong to two documents D1 and D2 are the sets

V1 and V2, respectively. Let us consider the set of shared neighbours Ns = N1∩N2.

Consider the weight of a vertex vij ∈ Vi as ϑij and the weights of the neighbours

Ns to be defined as

Γ = {γ1, ..., γn} ,

where n = |Ns|. For normalizing the weight of a node by its degree, let us denote

ϑ′ij =
ϑij

|vij ∈ Ei|
,

which is the weight given to any neighbour of vij. As we treat the edge weights as

resistors, the transferred weight over the edge from one node to its neighbour γk
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Figure 4: The illustration of the fail distance measure. The weights given to node
G are illustrated by the blue edges. The incoming weights are summed giving us
the total weight.

is given as:

γk =
∑

ϑ′ij :(vij ,nk)∈eij

ϑ′ij
wl

, (14)

where nk is the neighbouring node and wl is the weight of the edge between the

nodes vij and nk. For an example consider weighted graph as illustrated on Fig-

ure 4. Let us calculate the final weight of node G, when we set the weight of

1000 to any neighbouring node. Node G is connected to nodes B and K and I.

Giving 1000 units to K, we distribute the weight evenly between all the adjacent

edges, which means that each edge gets 500 units. The edge between K and G has

resistance of 0.1, thus the amount of weight coming from K is IK = 500
0.1

= 5000

units. By the same logic we get weight from B, which is then IB = 1000
3
· 3

4
= 250

units. Totalling, we get that the weight on G is I = IK + IB = 5250 units.
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4 User Behaviour Analysis

Analysing user behaviour on websites is a good way for obtaining implicit informa-

tion of user preferences. Due to the information overload, user behaviour analysis

for recommending web content which might be useful seems reasonable idea. Some

machine learning approaches for user behaviour analysis for news services can be

found in [LL02, SK97, BP00]. Though, large part of these approaches is focused

on which information to extract from user behaviour - scrolling, reading time and

other actions which user is performing on the website.

We are mainly interested in sequential browsing of news stories and our goal is

to see whether there is correlation between the news similarity scores and the

sequential browsing of news stories.

4.1 Scores

As we are looking for sequential patterns from data, we will define the problem in

terms of sequence mining. Let us consider a set of transactions T = {t1, t2, ..., tn}
where every transaction is a sequence of events ti = 〈e1e2...em〉. In our case two-

event sequence s′ = 〈xy〉 is a subsequence of transaction ti in case 〈xy〉 ∈ ti or

〈yx〉 ∈ ti, which are transactions where x and y occur consecutively.

Let us denote the function cover:

cover(〈xy〉) = {s : 〈xy〉 ∈ s ∨ 〈yx〉 ∈ s} ,

which is the set of sentences which contain elements x and y side by side. Then

we can define the support count

support(〈xy〉) = |cover(〈xy〉)| ,

which is the number of elements that 〈xy〉 covers. Let us denote a frequency which

is relative to the number of transactions which contain two events x and y

relative-support(〈xy〉) =
support(〈xy〉)

|{t ∈ T : x ⊂ T ∨ y ⊂ T}|
. (15)
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Let us denote the relative-support for one element sequence with regards to the

sequence 〈xy〉

relative-support(〈x〉, 〈xy〉) =
support(〈x〉)
|T |

, (16)

which is the support of event x normalized by the total number of transactions

where sequence 〈xy〉 occurs. The score (15) can be used to measure the connection

strength between two news stories. In some sense we can think of it as the Jaccard

measure for two events – how often two events occur together divided by the

number of all occurrences of either event x or y.

Another score which we can calculate is the interest factor:

interest-factor(〈xy〉) =
relative-support(〈xy〉)

relative-support(〈x〉) · relative-support(〈y〉)
,

which compares the frequency of the co-occurrence of the events against frequency

which is computed under the statistical independence assumption. A nice overview

of the interest factor and many other measures is given in the handbook [Han05].

It is important to note here that we can use these measures for two sequentially

occurring news stories, but we can also define a maxgap constraint, which allows

gaps between the occurrences of news stories x and y. Let us define the cover

function with maxgap constraint:

cover(〈xy〉,maxgap) = {tk : ei = x ∈ tk, ej = y ∈ tk ∧ |i− j| < maxgap} ,

which we can use in the support and interest-factor calculations.

The initial setting is the special case for maxgap being equal to 2. Setting maxgap

equal to the length of transaction, we count x and y to be a subsequence of ti if x

and y appear together in transaction ti.

In the case study, we will use these measures to find news stories which are related

to each other considering users browsing behaviour.
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5 Case Study

In the case study, we will give an overview of the practical part of our work. As

follows we first give an insight into the problems which we are solving, then we

introduce the dataset and discuss various aspects in data preprocessing. We will

also give a methodology for benchmarking different similarity measures and a way

to analyse the correspondence between the behaviour of users and the similarity

measures.

5.1 Problem Statement

Our goal is to analyse the methods for finding similar documents which were

proposed in the theoretical part. In addition to accuracy we also analyse whether

it is possible to use proposed methods in real-world applications. Our interest in

the measures is two-sided - on one hand we want the measures to give high results

in accordance with human decision, on the other hand we would also like the

measures to detect interesting underlying connections between documents where

the similarity is not trivial. The motivation for the first aspect is not hard to see -

methods can be used in information retrieval systems, news recommender engines,

topic detection et cetera.

The second part of our case study analyses user behaviour on a website. Our goal

is to see whether there are frequent patterns which occur in the browsing sessions

and how do they relate to the similarity scores. This is valuable information for

the news provider in many ways. For instance it enables the website to make news

recommendations for a user in order to extend the browsing session or it gives a

possibility to avoid publishing news stories which may bring along shorter sessions.

We will also analyse how the terms connected in the background graph model are

similar to human opinion. We will use two approaches for analysing this: (1)

we cluster the graph and see whether the clusters contain words which appear in

similar contexts; (2) we perform analysis on human-selected keywords.
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5.2 Preliminary Operations

First, we give the preliminary operations which we have to do before calculating

the similarity between documents. The goal is not to go over the theoretical part,

but to give step-by step overview what decisions we did and why.

Data. For obtaining data we scraped the popular Estonian news website Pos-

timees.ee. In total we scraped 71279 news stories. The scraping process itself was

trivial - we saved the whole web page HTML on the hard disk, extracted all the

links from the web page which referred to another news story and moved around

on the web page in the breadth first manner. We implemented the crawler by

ourself, using the htmlunit [htm] library

Data Preprocessing. From the HTML documents we extracted the title and

contents of the news stories by using regular expression parser. As the morpho-

logical parsers use the structure of the document, the next step was to detect the

word types in the document. Our text corpora was in Estonian, so we used the

Estonian Morphological Analyser (ESTMA) [Kaa97]. This is an important step of

data preprocessing as it has strong influence on the quality of the features we are

going to extract later.

Given the text with morphological tags, we need to decide which words we will

keep and which we will remove from the text. We used two different settings: (1)

we leave only nouns, foreign words and names; (2) we leave nouns, verbs, foreign

words and names. We decided to use these features, as intuitively these word

forms explain a large part of the variation of the textual content. After extracting

the words, we merged them together into original sentences.

5.2.1 Extracting Document Features

We used two document feature extraction methods- tf-idf keywords and tpf-idf-tpu

associations. We generated two files, where for every document we stored the tf-idf

keywords into one file and the tpf-idf-tpu concept associations to the other file. As

37



ROBIN JUHKENTAL

NIMI JA VANUS:
Robin Juhkental (19)
ELUKOHT:
Harjumaa, Tallinn
PRAEGUNE KOOL VÕI AMET:
Hetkel olen muiduleivasööja.
VARASEM OSALEMINE KONKURSSIDEL JA TULEMUS:
Kunagi (vist kolmandas klassis) sai osaletud ”Laulukarusellil”. Televooru sain, aga tõenäoliselt maksis rohkema saavutamise
asjaolu, et olin seal veel mitu korda rohkem närvis kui viimase ”Kahe takti” saate salvestusel.
KAS OLED LAULMIST ÕPPINUD, KUS JA KELLE JUHENDAMISEL:
Ei ole kunagi laulmist õppinud
MIKS OSALED SAATES ”KAKS TAKTI ETTE”:
Konkreetset põhjust polegi, aga tagantjärgi ütleks, et pigem hea kogemuse pärast kui mingi meeletu võidusoovi või telepurki
saamise nimel.
LEMMIKLAULJA/EESKUJU EESTIST:
Hetkel ei näe ma Eestis kedagi Vaiko Eplikule võrdset, eriti just kõiges selles, mis puudutab heliloomet. Aga väga hästi
on laulnud veel Urmas Alender, Tõnis Mägi, Jaak Joala ja Ivo linna. Naislauljatest on minu jaoks kõige nauditavam Liisi
Koiksoni laulmine.
LEMMIKLAULJA/EESKUJU VÄLISMAALT:
Neid on palju. Suurimad eeskujud on Paul McCartney, John Lennon, Robert Plant, Paul Rodgers, Joe Cocker, Sam Cooke,
Brian Wilson.
MILLIST MUUSIKAZ̆ANRIT EELISTAD:
On juhtunud nii, et hetkel laulan peamiselt vanakooli rocki, aga üldiselt meeldivad ka blues, funk, jazz ja ka hästitehtud
popmuusika.
MIS ON SINU ELUS HETKEL KÕIGE TÄHTSAM:
Siia peaks vastama, et muusika on kõige tähtsam? Muusikata elada oleks raske, aga selline vastus kõlaks minu arvates
klĭseelikult.
MILLEST UNISTAD, EESMÄRGID:
Minu jaoks on muusik see, kes elatub muusika tegemisest. Tore oleks kui saaks kunagi ka ennast muusikuks pidada.
SINU PARIM OMADUS:
Võib-olla võime kohaneda eri stiilides, aga tegelikult saaks objektiivsema vastuse, kui seda küsida kelleltki teiselt.

Figure 5: An interview with Estonian singer Robin Juhkental. A sample news
story from the Postimees corpus.

the bag of words model is easy to extract from the original document we did not

create specific bag of words file. As an example consider a short interview article

with an Estonian singer Robin Juhkental which can be found in Figure 5. The top

5 most highly scored features of the tf-idf and tpf-idf-tpu can be seen in Table 2.

This is quite an interesting example and conceptually the tf-idf keywords give the

important aspects of the news story as the terms are important with regards to

the context. It is a bit harder to interpret the term pairs of the document, though

in general these associations may be considered important in the document.
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Tf-idf Score Tpf-idf-tpu Score

lemmik laulja 0.17 (muusika, tähtsam) 4.67
laulmine 0.16 (laulmine, õppinud) 4.00
ees kuju 0.13 (kõige, muusika) 3.54
muusika 0.11 (ees kuju, paul) 2.79
muiduleivasööja 0.11 (rask, tähtsam) 2.79

Table 2: Frequent keywords and term pairs for article about an Estonian singer
Robin Juhkental.

5.2.2 Background Graph Generation

Different constraints can be used when we generate the background graph. There

are some properties of the graph which come due to the method of generation. In

the following we will show some results of the background graph which we have

found to be present also for other document corpora.

In general, the background graph is usually fully connected or has very few con-

nected components. By graph filtering we mean, that we remove some edges lower

than some fixed threshold. On the Figure 7, we can see four different components

which have been extracted after filtering the background graph with threshold of

200. All but one of the connected components represent different contexts, one

of them (in the bottom right corner) is a false positive which connects different

contexts by last name ‘jaanson’.

One interesting aspect to see, what the background graph looks like around a cer-

tain concept. First we removed all the edges from the graph which have weight

lower than 40 (the threshold was chosen by traditional method of trial and error).

Then we selected a term kesk erakond (Estonian Centre Party), which is the cen-

trist social liberal party in Estonia and extracted the neighbourhood such that we

kept only neighbours, which have edges connected to other neighbours. The results

can be seen on Figure 6. Intuitively we see, that these concepts are really very

closely related to the Center Party - savi saar is the leader of the party, Savisaar

is also the mayor (node linna pea) of Tallinn et cetera. As we can see, this gives

a good motivation for trying graph clustering. To see, whether the whole graph

is similar to the Centre Party example, we clustered the large background graph
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Clusters

1 2 3 4

sool vene meri paha pill
maitsesta väeüksused sõjalaevade meelehärmi
keedu sink dmitir ületamiseks mikk
köömnetega senakist naftatööstusesse kümnevõistlejate
väherasvast phothist kaspia kõrgushüppes
pipar tõmbumist energia ressurss tõkkeid
muskaatpähklit soomuki kolonn nafta juhe olümpianormi
oliivõli sõjaväebaas semjonov täitmise
riivitud territooriumilt sõjalaevastiku tõukab
laimimahla väeüksuseid tshinvalisse meistrivõistluste

Table 3: Table which shows the words which are clustered together by MCL clus-
tering algorithm.

using MCL [Don00, mcl] clustering algorithm with inflation parameter of 4.5. The

nodes which were put into one cluster can be seen in Table 3. We can observe very

strong relations between the words which belong to the same cluster. The first

cluster gives words for cooking, the second contains Russian military operation in

Georgia, the third cluster contains information about oil and energy (most prob-

ably related to Nord Stream) and the third cluster contains concepts from sports.

Our goal was to model the most common connections between concepts, and as

we we see the background graph does that quite well.

5.2.3 Related News Stories

In addition to the news stories, we also extracted additional information from

most of the scraped websites. Hand curated databases are valuable if we want to

benchmark methods which should behave similar to humans. For Postimees.ee,

there are an average 3.2 related news stories per one news story. Thus, for each

of the downloaded news stories we also extracted the related news stories which

were hand-picked by editors. By this we got pairs of related news stories.

An important thing to see here is that there is a temporal aspect in the related
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Figure 6: A neighbourhood of the term kesk erakond. The boldness of the edge
refers to the strength of the connections. Interesting is that connection between
savi saar and kesk erakond is not too strong.

Figure 7: A sample of the background graph, where all the nodes with a weight
smaller than 200 are deleted. This illustrates how words which appear in different
context form different strongly connected components.
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news stories - on the web page the older news stories are not connected with the

later published stories. This is one aspect which has to be taken into account,

when dealing with the news associations.

5.2.4 Sampling News Stories

For comparing the similarity measures of the news stories, we used the following

methodology. We created pools of the related and unrelated news stories. In each

of these pools we have 30000 news story pairs, where the paired news stories are

related or unrelated, respectively. Our main experiment model is, that we take

random samples from both pools and then make comparisons of the methods based

on these subsets. As an example, consider we take n samples from the news story

pools. Notice that this means that we have randomly selected n news story pairs

not n news stories.

There are some experiments for which we use another sampling strategy. We

selected a random news story d from the whole news story dataset. Then we

extracted all the related to n unrelated news stories with regards to d. After this

sampling we calculated the similarity measures, stored and repeated it m times.

5.2.5 Method Parameters

There are parameters which influence the methods when calculating the similarity

between documents. The main tunable parameters are the topN keywords or term

pairs features we are using for each document and the other parameter expEdges

defines how many high scored edges we include for each expanding node. The

expEdges parameter can be thought of as a dynamic expansion parameter, which

measures the edges’ importance with regards to a node, not by an absolute value.

Another tunable parameter bgThresh is the threshold for the edge weights in the

background graph. By using this parameter, it gives a way to remove nodes and

edges which are too weakly connected to the rest of the graph, i.e., removes noise.

In the following we will give a method which we used to get some approximation

which of the parameters would be reasonable to use.
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Receiver Operating Characteristic Curve. A common methods for visual-

izing the goodness of classifiers are the Receiver Operating Characteristic curves

which are also known as ROC curves. The ROC curve illustrates the ratio between

the false positive and true positive (hit) rates. For a random classifier these values

are both equal. For a good classifier we expect it to have high true positive and

low false positive rate.

Another measure of goodness for classifiers is the Area Under the (ROC) Curve

(AUC). As the AUC is is a portion of an area of unit square it’s value is always

between 0 and 1. The AUC value for a diagonal line, which represents the random

classifier is 0.5. If classifier has AUC less than 0.5, then it classifies instances in the

opposite way, which means that the classifications can be reversed. The interesting

statistical property of the AUC value is, that it is equal to the probability that

the classifier will rank a random positive instance higher than randomly chosen

negative instance [Faw06].

The R package verification gives a convenient framework for drawing ROC curves

[Pro10]. It gives a possibility to plot false alarm rate against the true positive rate

for a probabilistic forecast for a range of thresholds.

Finding Optimal Background Graph. First we need to find the optimal

threshold for the background graph. It seems reasonable to use the measure which

measures the document similarity by the overlap of the neighbourhoods as by this

we see which of the tuned background graphs contains the least noise. Considering

document features and expansion to the background we are also interested in the

topN and expEdges parameters. For achieving this we conducted the following

experiment:

1. Initialize parameters topN, expEdges and bgThresh.

2. Select 100 news stories.

3. For every news story extract related stories and 100 unrelated news stories.

4. Calculate neighbourhood overlap similarity for all configurations of parame-

ters.

5. Find the AUC scores for the measure under configuration.
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Figure 8: The AUC values for different bgThresh thresholds.

6. Select the best configuration.

At first let us find the best configuration of threshold of the background graph. As

follows we are going to analyse the AUC scores for different parameters. The idea is

to fix the parameters bgThresh, expEdges and topN by analysing the performance

of the neighbourhood similarity measure under different parameter combinations.

On Figure 8 we can see the AUC distributions of experiments for which the

bgThresh was 10, 15, 20, 25, 30, respectively. We can see, that the threshold of

10 stands out with quite low AUC mean score, thus is reasonable to discard it

from the further analysis. Significantly low AUC scores by Wilcoxon test we saw

for topN < 15 (p-value = 9.9 ·10-6) and expEdges < 3 (p-value = 4.6 ·10-6), which

means that we can also discard these parameters from further analysis. The next

step is to analyse the AUC values given bgThresh and topN. The distribution of

the AUC scores can be seen on the Figure 9a. As we can see the highest score is

achieved by the configuration where bgThresh = 20 and topN = 25. On Figure 9b

we can see the distributions of AUC scores between bgThresh and expEdges.

The best scored configuration from the plot would be where bgThresh = 20 and

expEdges = 7 or expEdges = 9. The Figure 10 shows the relationship between the

expEdges and topN parameters wrt. bgThresh. Again we see, that good scores
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Figure 9: Figures which represent the distribution of AUC values with respect to
constraints given under the subfigures.

are achieved with the parameters we pointed out. Thus, though a robust way for

finding the optimal configuration later we decided to use the following constraints:

bgThresh = 20, topN = 25 and expEdges = 7. We could have also chosen topN

= 30 and expEdges = 9, but due to the very small difference in AUC scores we

decided to use 20 and 7, respectively, as it is computationally less expensive.

5.3 Similarity Score Experiments

In the following, we will analyse the behaviour of the different similarity measures.

The purpose of these experiments is to see whether there exists a correlation be-

tween human opinion and the similarity measure. Moreover, we are interested if

the similarity measure is higher for these news stories which are annotated by an

editor as related news. The scores we are going to analyse are as follows: cosine,

extended cosine, neighbourhood, shortest path, neighbourhood with features,

fail distance and voltage based similarity measure. In the cosine calcula-

tion we take the terms with the tf-idf weights and calculate the angle between two

documents. The extended cosine means, that we have included neighbourhood

information into the cosine calculation. The neighbourhood measure is the ratio
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Figure 10: Average AUC values for different expEdges thresholds grouped by
the topN parameter. The group columns refer to different topN parameters and
horizontal groups to expEdges parameter.

between the the first level neighbours which are shared and all the neighbours

of the two documents, shortest path calculates the average shortest path be-

tween two documents, neighbourhood with features means that in addition to

neighbourhood we also take into account the original terms, fail distance tries

intuitive approach to handle high-degree node problem by incorporating weights

and the voltage based similarity which treats the background graph as a electrical

network.

Score Sanity Check. First of all, let us check which of the scores are generally

higher for related news stories and smaller for unrelated news. For this we took all
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the similarity scores for related news stories and for unrelated news stories. For

testing whether the population means differ significantly we used the Wilcoxon

signed-rank test for all the methods. For all measures except the shortest-path,

we got the p-value < 2.2 · 1016, which means that the methods give significantly

different (presumably higher) scores for related news stories than for unrelated

news stories. For the shortest-path measure we got the p.value = 0.12. This

might mean that the shortest-path score is not working as well as other measures.

The reason for this might be, that the background graph is very dense, thus the

shortest path between two terms do not describe the similarity between them very

well.

Verifying Scores. The method for verifying the scores is the following. We took

a sample of 1000 related and 1000 unrelated news stories. Then we merged these

two samples together and calculated the AUC scores and ROC plots for each of

the scores. Also, for seeing the variance of the performance, we conducted such

experiment 100 times.

Let us first take a look at the general predictive performance of the measures. On

the Figure 11 we can see the variability and performance of different methods.

We can clearly see, that least variability and the highest AUC is achieved by

the cosine measure. The second place is achieved by the neighbourhood with

features measure. In this case it seems, that the background methods do not work

very well and thus we get lower prediction scores than expected. The summaries

of the different methods are given in Table 4. It is interesting to see, that as we

suspected in the scores sanity check phase, the shortest path distance measure

does not give even reasonable results on our dataset.

It is also important to note here, that the related news stories are not actually

“hand-picked” but they are recommended to the editor by the cosine recommender,

thus it is quite logical that the cosine measure works very well on the dataset.

Short News. As some news stories are shorter than other, we had an idea to try

the performance of the methods on those news stories. The idea behind this is, that

we can see how stable the measures are - how much information does the method

need, to make correct predictions. For testing this, we created two new news story

47



A
U
C

0.5

0.6

0.7

0.8

0.9

Co
sin
e

Ext.
 C

os
ine

Fa
il

Ne
igh
.

Neig
h. 

& Fea
t.

Sho
rte

st 
Path

Vo
lta
ge

Figure 11: AUC values calculated over all the experiments.

pools, one for related news stories and the other for unrelated news stories. These

temporary pools contained news story pairs such, that both of the news stories

contained less than 50 words. The reasoning for this is, as we normally use top 50

tf-idf terms for the cosine measure, then we are interested in these news stories,

which we have less information. Then we divided the document pairs into two

parts depending whether they have more than 20 words or 20 or less. Using our

iteration technique, we took many samples from the pools, calculated the AUC

48



Method Mean Median

Cosine 0.95 0.96
Extended Cosine 0.83 0.83
Neighbourhood 0.85 0.85
Shortest Path 0.51 0.51
Voltage 0.79 0.79
Fail Distance 0.86 0.86
Neighbourhood with Features 0.90 0.90

Table 4: The AUC distribution descriptive values for each of the methods.

values and then analysed the variance of the performance. The results can be

seen on Figure 12. Notice, that the cosine similarity measure is quite strongly

affected when the number of features decreases. On the same time the measures

which use the background information seem to be more stable and their accuracy

even increases. The reason for this is, that a large number of words “confuse”

the background graph measures by generating too much noise. This observation

made us wonder, whether the methods which use contextual information, are more

stable when the number of available features is small.

Query Expansion. We are going to study the performance of the methods

with regards to the query expansion in different settings. By query expansion we

mean, that by using the initial document features, we incorporate more relevant

information to the similarity calculation.

In the first approach we want to test how small number of query terms affects the

retrieval of relevant documents. Consider we want to calculate similarity between

two documents d1 and d2 and we want to see how well the measures work with

n query terms. We extract n terms from document d1 and before defined topN

terms from d2 and perform the similarity calculation. We performed this kind of

experiment for random 1000 related and 1000 unrelated news stories taken from

the pools for n = (2, 4, 6, 8, 10, 12, 15). This experiment was conducted 5 times.

The performance of each of the measures can be seen on Figure 13, where the

performance lines are smoothed such, that the variance of the experiments is taken

into account. We can observe some interesting aspects. First we see, that the term
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Figure 12: The AUC value difference between news stories with length under or
equal to 20 words and for more than 20 words.

reduction has somewhat stronger influence on the cosine measure than for the

neighbourhood with features measure and for ≈ 2 terms their performance is

more or less equal. The effect on other measures is quite similar to cosines’,

but we can say that the neighbourhood with features measure seems to be the

most stable. The numerical values for the experiment can be found from Table 5.

When analysing the means of the performance we see, that on average the graph

based measures are a bit more stable than just the standard cosine measure.

News Stories by Titles. As we are interested in the query expansion then

comparing news stories by only using their titles is an interesting experiment.

News story titles usually contain the most important information about the actual

content. One approach to compare how well the measures work with limited
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Figure 13: AUC values of the methods when using different number of terms.

Number of Terms

Method 2 4 6 8 12 15 20

Cosine 0.77 0.83 0.86 0.87 0.88 0.89 0.91
Ext. Cosine 0.71 0.77 0.78 0.81 0.81 0.82 0.84
Neighbourhood 0.68 0.73 0.76 0.78 0.79 0.79 0.82
Shortest Path 0.46 0.47 0.48 0.50 0.50 0.51 0.50
Fail Distance 0.67 0.73 0.76 0.78 0.80 0.80 0.82
Neigh. with Feat. 0.77 0.82 0.84 0.86 0.87 0.86 0.89
Voltage Distance 0.54 0.61 0.65 0.68 0.7 0.72 0.73

Table 5: The mean AUC values for each of the methods for different number of
terms.
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Method Mean Median

Cosine 0.71 0.71
Extended Cosine 0.68 0.68
Neighbourhood 0.64 0.64
Shortest Path 0.76 0.76
Voltage 0.53 0.53
Fail Distance 0.61 0.61
Neigh. with Feat. 0.73 0.73

Table 6: The AUC distribution descriptive values for each of the methods in case
we are using only document titles as features of a document.

amount of information, is to use only the words in the titles as features. For this we

extracted only the titles of the news stories and gave all the words an equal weight.

Then we calculated the similarity for 3000 related and 3000 unrelated news stories.

Then we used the scheme by sampling 500 documents from both datasets for 100

times and plotted the distributions of the AUC scores on Figure 14. Surprisingly

we see, that the shortest-path measure works very well on this dataset. Also

the Wilcoxon test gives p-value < 2.2 · 1016 for all the measures including the

shortest-path measure. This may be due to the fact, that we have a small

number of very specific terms and if there exists a path between two documents,

then the documents are most probably related. On the other hand, if the titles

are very different, they are most probably far from each other. This might not

be the case we tested in the short news experiments as there are usually greater

number of features and the probability for a path from one document to another is

much greater. Another interesting fact is that the neighbourhood with features

measure is quite stable. In this experiment the cosine measure works remarkably

poorly. We see, that the main issue with the cosine measure is the stability. The

mean and median values of the methods performances can be found in Table 6.

Similarity Using Tpf-Idf-Tpu. As in our ongoing research tpf-idf-tpu shows

potential for creating mind maps of documents, we will also make an experiment

to analyse how the measures work when the initial keywords are extracted by the

tpf-idf-tpu measure i.e. word pairs. Intuitively, as these concept associations are
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Figure 14: The AUC scores for news stories where the news story titles are used
as the features of a document.

important given specific document, we can reason, that these terms are also im-

portant in the context of the document.

The AUC distribution using these features can be see on Figure 15. We see, that

cosine measure is still working better than other measures, though the perfor-

mance is more than 20% worse than for tf-idf terms. Surprisingly this feature

extraction method does not give good results on document similarity.

Ensemble. As we have seen from the experiments the methods work well in

many different settings. This gives a reasonable assumption that if we could use

these measures effectively together, we could get better results on predicting the

related news stories. Though, we achieved very good performance with the cosine

measure on the news stories in general, we also tried an ensemble model. We used
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Figure 15: AUC distributions for different methods using the terms of top
tpf-idf-tpu term pairs as features.

the logistic regression model and saw that the performance gain was minimal (from

AUC ≈ 0.957 to AUC ≈ 0.963). This was also quite well explained by principal

component analysis which showed that most of the variance in data is explained

by the cosine measure.

Another setting where we tried the ensemble method was predicting news stories

by their titles. The best mean AUC score 0.76 was achieved by the shortest path

method. For creating the model, we divided the data into train and test sets.

Then we trained the model and calculated the AUC scores on the predictions. We

iterated through this process 20 times. By using the logistic regression model we

were able to achieve mean AUC score of 0.90. The best model summary can be

seen in Table 7. Though the p-value for the neigh inc feature is larger than 0.05,

removing it from the model makes the overall predictions worse.

Performance of LSI. The last experiment regarding the document similarity is

as follows. We sampled 500 document pairs from the related news story pool and

500 document pairs from the unrelated news story pool. Then we merged all these
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Estimate Std. Error z value Pr(> |z|)
(Intercept) -2.6820 0.0562 -47.75 0.0000

short 13.2287 0.5399 24.50 0.0000
cos 27.4236 1.7984 15.25 0.0000

neigh inc -0.7644 2.2623 -0.34 0.7355
volt -0.0013 0.0008 -1.72 0.0860

Table 7: The best found model for predicting news story relatedness by using only
titles. The short is for shortest path measure, cos is for cosine, neigh inc is for
the neighbourhood with features and volt is for the voltage measure.

news stories together and calculated the LSI matrices and reduced the matrices to

250 dimensions. After calculations we took top n = (2, 3, 4, 5) terms of the docu-

ments and calculated the similarity with LSI methodology between the documents

which originated from the pools. Then for every number of different initial terms

we calculated the AUC values. We took the same news story samples which were

used during LSI and calculated the similarities with other methods, respectively

with n = (2, 3, 4, 5) initial terms. The comparison of proposed measures and LSI

is given in Figure 16.

A quite big downside of the method is that computing the singular value decompo-

sition needs a lot of memory and computational power, thus it is only reasonable

to use standard LSI on small scale datasets. For large scale databases there are

available methods which deal with feature selection before computing the singular

value decomposition, for instance [YYLC09, STS04], but the in-depth analysis of

them is not in the scope of current thesis.

5.4 Behaviour Experiments

Usually every browsing action of a specific web page visitor is stored into a

database. The information incorporated in the log is the time, user id, the source

and the destination. Usually the user browsing behaviour is traced by session or

cookie id. For the session id case we can trace the behaviour of user during one

session (which is ended after x minutes) and for cookie id’s we can do this over

longer periods of time. In our case, we can use the access logs to extract the
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Figure 16: The AUC values for LSI and other previously used document similarity
measures.

information how users browse news stories.

A quite interesting way to analyse how well the scores work, is to find correlations

between the browsing behaviour of users and the similarity scores. For this we

extracted the user sessions from the access database and we decided to split user

session if there is more than 15 minutes between two clicks. This is reasonable,

as there might be longer articles which take more time to read, but 15 minutes

strongly indicates that users has been away for a while. This is also quite impor-

tant, as users interest may change between sessions, thus is is important to analyse

them separately.
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Methods. Consider a transaction T = 〈t1, t2, ..., tn〉. For analysing the be-

haviour, we have two different approaches. The first assumes that user chooses

the next news story based on the last one he/she read - thus the average similarity

score might be higher between news stories which are browsed sequentially. Thus,

we calculate the similarity scores only between the items ti, ti+1 ∈ T .

The other approach is under the assumption that the user tends to read similar

news stories during one session and the sequentiality is not that important. For the

second option we calculated all the pairwise similarities between two news stories

which occur in one session. So given the same transaction T , this means that we

calculate distances between any ti, tj ∈ T, i < j.

Frequent News. Some of the news stories are read sequentially more often than

others. First we assume, that the similarity scores between frequently together

read news are higher than the scores which are read together non-frequently. We

tested the hypothesis for both cases when the news stories are visited sequentially

and when they are visited together in one session. For testing the hypothesis

we ordered the scores by frequency and took the top 5 and 10 percent of the

most frequent news stories and for 200 random samples used the Wilcoxon Rank

Sum Test to analyse whether the score means differ significantly with regards to

randomly selected scores from the set. It is important to note here, that in the

sequential news pairs in the top 5 and 10% there were 18.83% and 15.83% of hand-

picked related news stories, respectively. For the session news pairs for 12.55 and

10.76% only were 0.26% and 0.57% marked as hand-related, respectively.

The mean p-values of the tests can be seen in Table 8. We can observe some

interesting things:

• For the top 5% news stories we can observe that the measures using the

background graph measure may give more reasonable predictions than the

traditional cosine measure, as the p-values show significant difference be-

tween the similarity scores. For the 10% sequentially browsed news stories

we observe that this does not apply any more.

• For both, top 5% and 10% of the news stories which are frequently browsed
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Sequentiality Cosine Ext. Cosine Neighbourhood Fail Neigh. with Feat.

Sequential (5%) 0.21 0.021 0.032 0.027 0.028
Sequential (10%) 0.22 0.039 0.079 0.076 0.079
Combination (5%) 1.14 · 10−9 1.3 · 10−12 < 2.2 · 10−16 < 2.2 · 10−16 < 2.2 · 10−16

Combination (10%) 2.6 · 10−11 5.2 · 10−13 < 2.2 · 10−16 < 2.2 · 10−16 < 2.2 · 10−16

Table 8: The p-values for Wilcoxon Rank Sum Tests. The news stories were
ordered by frequency and then the similarity scores of top 5 or 10% of the stories
were compared to randomly selected pairs of news stories.

Sequentiality Cosine Ext. Cosine Neighbourhood Fail Neigh. with Feat.

Sequential (5%) 0.54 0.60 0.60 0.61 0.60
Sequential (10%) 0.53 0.57 0.56 0.56 0.56
Combination (5%) 0.58 0.62 0.66 0.68 0.68
Combination (10%) 0.57 0.59 0.63 0.65 0.63

Table 9: The AUC values when the top 5 and 10% were set as related and all other
news stories as unrelated.

within one session, tend to have different similarity scores.

• In the pairwise sequential behaviour the cosine measure does not seem to

work well.

For seeing the actual performance of the measures, let us make an assumption

that these news stories which are frequently visited together should be marked as

related. Thus we mark all the top 5 or 10% of the news stories as related and the

rest as unrelated. Then we calculate the classifiers AUC which shows the predictive

performance. We provide an analogous table as before, but with AUC values seen

in Table 9. We can observe that the similarity measures which use background

information always work better than the standard cosine measure. Though, the

AUC values are not very high, in the best case our proposed measures get 8.5%

better performance.

Dependent News. In the previous paragraph, we assumed that interesting news

stories are those which are frequently looked at together. In the following analysis

we assume, that interesting are these news stories which are dependent on each

other. As previously we sorted the news stories by their frequency, then now let
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Sequentiality Cosine Ext. Cosine Neighbourhood Fail Neigh. with Feat.

Sequential (5%) 0.75 0.65 0.68 0.69 0.70
Sequential (10%) 0.65 0.58 0.62 0.62 0.63
Combination (5%) 0.70 0.64 0.69 0.70 0.70
Combination (10%) 0.66 0.62 0.67 0.69 0.67

Table 10: The AUC values when the top 5 and 10% of the news story pairs, ordered
by interest factor, were set as related and all other news stories as unrelated.

us analyse the same properties of news story similarities by sorting the news pairs

by their interest factor score. When the sequentially browsed news are sorted by

their interest factor the number of hand-related news stories in top 5 and 10%

are 38.51 and 26.96%, respectively. For the within session created news pairs the

hand-related news stories in the top 5 and 10% are 28.13 and 17.93%, respectively.

After sorting the news story pairs by their lift we assigned the top n% of the pairs

to be related and the rest as unrelated. The AUC scores for such classifiers is

summarized in Table 10. As we can see in this setting the performance differences

are quite small. There seems to be correlation between the percent of related news

stories and the performance of cosine measure - in this sense other methods may

be a bit more stable, but not significantly. All in all it seems, that the quality

of predictions depends how many hand-related news stories happen to be in the

sorted list. What we can see is, that the lift measure seems to order the news quite

well according to their actual relatedness.

In the current experiments we do not present results with the voltage distance.

The reason for this is, that these experiments were conducted before we started

using the voltage distance. The goal of this experiment was to see, whether the

methods which use background graph work significantly better than the ones which

use just the standard similarity. As the results indicate that this is not so, then

we did not find it necessary to conduct the experiments with the voltage distance.

5.5 Experiments with Keywords

As for every news story editor has to pick a minimum of two keywords for the news

story, it leads us to the final experiments, where our goal is to first analyse the
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correlation between the human picked keywords for a news story and the calculated

tf-idf and tpf-idf-tpu keywords and the second experiment is to see, how the hand-

picked keywords and the background graph correlate. We will also see, how the

document based and sentence based log-likelihood measures differ.

Before going into details let us briefly define two important measures used in the

evaluation of pattern recognition - precision and recall. In our case, let us consider

that we have the hand-picked keyword set Kh and retrieved keyword set Kr. Then

precision is given as:

precision =
|Kh ∩Kr|
|Kr|

,

which describes the relative overlap between the matched keywords with regards

to the retrieved documents. Another measure is recall, which is given as:

recall =
|Kh ∩Kr|
|Kh|

,

which is the relative overlap between the matched keywords with regards to the

hand-picked keywords. As both of these measures have their weak points, a popular

method is to combine them into F1 measure:

F1 = 2 · precision · recall
precision+ recall

,

which is basically the weighted average of the precision and recall. More informa-

tion of these measures can be found in [TSK05].

For tf-idf keywords it is seems reasonable to select top 5 keywords for news story

and then we can calculate the precision and recall for these retrieved keywords.

For tpf-idf-tpu keywords this is less trivial, as the retrieved keywords are actually

term pairs. We can approach the problem in two different ways: a) we create pairs

between all the keywords and calculate the precision and recall between create

pairs and retrieved pairs b) we take top 5 pairs, transform them into 10 keywords

and calculate the precision and recall between the retrieved keywords and actual

keywords.
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Background Graph. The methodology for validating the background graph

is as follows. For every hand-picked keywords selected for a news story, we will

create pairs between all of them. For instance if the keywords for news story are

‘war’,‘iraq’ and ‘usa’, we get the pairs (‘iraq’, ‘war’), (‘iraq’,‘usa’) and (‘usa’, ‘war’).

Similarly when creating the background graph, we store the values k11, k12, k21, k22,

where they represent the co-occurrences of terms in the keyword sets, and calculate

the log-likelihood ratios for each of these pairs.

For validating the background graph we take all such hand-picked keyword pairs

which have edges in the graph. Then we will get two ordered sets, one where the

keyword pairs are ordered by their co-occurrences in the keyword sets and one

where they are ordered by their co-occurrences in the news stories. This enables

us to calculate the Kendall tau distance between these two lists τ1, τ2:

K(τ1, τ2) =
∑
{i,j}∈P

K ′(τ1, τ2),

where P is the set of pairwise elements in τ1 and τ2 and the function K ′(τ1, τ2) is

given as:

K ′(τ1, τ2) =

0, if i and j are in the same order in τ1 and τ2

1, otherwise

As the maximum value of the distance is m = n(n−1)
2

and minimum distance is

0, we will use m as normalizing constant by dividing K(τ1,τ2)
m

, which gives us a

distance measure in the range [0, 1].

Keyword LLR vs. Other Log-Likelihoods. For seeing how the keyword

log-likelihoods correlate with the log-likelihood ratios calculated from the doc-

ument corpus, we conducted an experiment, where we chose such random 100

keyword pairs which had edge in the background graph. Then we created to or-

dered term pair lists - one which was reverse ordered by the keyword log-likelihood

measure and the others which were ordered by the sentence and document based

log-likelihood measure. Then we calculated the Kendall tau distances between
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these ordered list. On the Figure 17 we can see the distributions of the Kendall

tau distances of lists which are ordered by different log-likelihood score. As we can

see, the methods usually do not order the term pairs similarly. The most similar

orderings are between the keyword and sentence based log-likelihood ratios, but

even a Kendall tau’s distance of 0.4 means that the orderings are not very similar.

The document based calculation orders the pairs completely differently from the

keyword based measure. Its distance is even greater than for the randomly ordered

pairs, which means, that it tends to order the term pairs in opposite manner wrt

keyword likelihood measure. Also we can see, that sentence and document based

log-likelihood ratios work in quite a different way. As the sentence level measure

works more similarly to our goal, we chose this as our measure for the background

graph.

62



variable

K
en

da
ll 

ta
u 

di
st

an
ce

0.4

0.5

0.6

0.7

Do
cu
me
nt

Ra
nd
om

Sen
. v

s. 
Doc

Se
nte
nc
e

Figure 17: The Kendall tau distance distributions between lists which are or-
dered by differently calculated log-likelihood measures. The labels Document and
Sentence state that the list of term pairs is ordered by the log-likelihood ratio cal-
culated over the corresponding unit. The Random states that the term pairs are
ordered randomly. These three sets are compared to the keyword lists ordered by
the log-likelihood values of the keywords co-occurrence. The Sen. vs. Doc shows
the distance between the sentence level and document level orderings.
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6 Conclusion

In this thesis we address the problem of finding non-trivially similar documents

from a large document corpus. We have given a theoretical overview of some of

the traditionally used document similarity methods, which are the cosine similar-

ity and latent semantic indexing using the tf-idf weights. We introduced a concept

of a background graph and defined document similarity measures, which used this

graph for measuring contextual similarity. We conducted several experiments on

Estonian news story provider Postimees.ee dataset. For general case our proposed

methods did not work as well as the traditional cosine measure. Though, we ob-

served that the proposed measures are quite effective in those cases where the

documents are represented by a few high-quality features. On the Postimees.ee

dataset we also observed that some of our proposed measures work better than

latent semantic indexing method. We saw that the proposed similarity measures,

which use the background graph, have potential for predicting which news stories

would be interesting for the news website user.

The conducted experiments in this thesis give a strong indication that there might

be several reasonable applications for the background graph. In the future we want

to put more emphasis on how different contexts are represented in the background

graph and how it would be possible to map documents into different contexts.

There is an ongoing research, which studies the ways of using the proposed back-

ground graph and the tpf-idf-tpu measure for creating mind-maps and summaries

of documents.
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7 Mittetriviaalselt sarnaste dokumentide otsimine

suurest dokumentide korpusest

Magistritöö (30 EAP)

Oskar Gross

Sisukokkuvõte

Käesoleva magistritöö eesmärgiks on uurida, kuidas leida mittetriviaalselt sarna-

seid dokumente suurest dokumentide hulgast. Antud töös kirjeldatakse nii tradit-

sioonilisi meetodeid dokumentide sarnasuse uurimiseks kui ka tutvustatakse uusi.

Lisaks viiakse läbi eksperimendid, et uurida väljapakutud mõõtude käitumist and-

metel.

Traditsioonilised dokumentide sarnasusmeetodid mõõdavad sarnaste sõnade esine-

mist kahes dokumendis. Antud töös käsitleme, mis probleemid kaasnevad kui me

kasutame dokumentide sarnasusmõõdu arvutamisel vaid viimastes leiduvaid sõnu,

tutvustame olemasolevaid kui ka pakume välja uusi mõõte nende probleemide

ületamiseks. Dokumendid on mittetriviaalselt sarnased, kui nad sisaldavad vähe

ühiseid sõnu, kuid on kontekstuaalselt sarnased.

Selleks, et tuvastada dokumentide konteksti pakume töös välja taustgraafi kontsept-

siooni. Taustgraafi eesmärk on modelleerida sõnade ehk kontseptsioonidevahelist

seost, andes rohkem kaalu nendele sõnadele, mis esinevad tihti koos. Saadud taust-

graafi kasutame erinevate dokumentidevaheliste sarnasusmõõtude arvutamiseks.

Käesolevas töös käsitletakse ka kasutaja käitumise ja sarnasusmõõtude vahelist

seost. Töös antakse lühiülevaade järjestuste kaevandamise põhimõistetest ning ka-

sutakse neid, et uurida, kuidas erinevad sarnasusmõõdud modelleerivad kasutaja

käitumist.

Töös viiakse läbi erinevaid eksperimente uudisportaali Postimees.ee andmetel.

Taustgraafi uurimisel näeme, et loodud graaf kirjeldab kontekstisiseseid kontsept-

sioonide vahelisi seoseid väga hästi. Uurides sarnasusmõõte näeme, et üleüldisel

uudiste soovitamisel töötab meie väljapakutud meetoditest paremini traditsiooni-

line meetod. Mõõdud, mis kasutavad taustgraafi informatsiooni, annavad pare-
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maid tulemusi traditsioonilistest meetoditest, juhul kui me kasutame väheseid,

kuid kvaliteetseid andmeid dokumendi kohta.

Käesolev magistritöö pakub välja uue metoodi dokumentide sarnasuse leidmiseks

ning näeme, et antud meetodid töötavad kindlatel juhtudel paremini kui varem ka-

sutusel olnud mõõdud. Väärtuslikuks avastuseks töös võib tuua välja taustgraafi

loomise, mille edasine uurimine võib anda huvitavaid tulemusi teksti kontekstitu-

vastuses ja ka mõttekaartide koostamisel.

Autor soovib avaldada südamest tänu oma juhendajatele, kelle ideed, põhjalikkus

ja järjekindlus ei ole olnud mitte abiks ainult käesoleva töö kirjutamisel vaid seda

kogu minu viimaste aastate, ja loodetavasti ka tulevaste, õpingute jooksul.
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