
Cryptology I (spring 2018) Dominique Unruh

Exercise Sheet 2

Out: 2018-03-01 Due: 2018-03-09

Problem 1: Linear block ciphers

Consider a block cipher E taking 2n bits to 2n bits that consists of a Feistel network
with a round function F (k,mhalf) that has the following property:

For each possible key k, there exists an n × n matrix A(k) such that for all n-bit
messages mhalf , we have F (k,mhalf) = A(k)mhalf . (I.e., for a fixed key, F is linear.)

(Reminder: since we operate on bits, matrix multiplication is done modulo 2, i.e.,
(A(k)mhalf)i =

∑
j A

(k)
ij m

half
j mod 2.)

We will show that this block cipher cannot be secure under chosen plaintext attacks
(by giving an attack).

Note: Even if you do not manage to solve the first parts of this problem, you can still
solve the later parts by just assuming that you have solved the first ones.

(a) Let m be a 2n-bit message within the Feistel network, before swapping the two halves.
Construct a 2n× 2n matrix B such that Bm is the result of swapping the two halves.
(I.e., the first half of m is the second half of Bm and vice versa.)

(b) Let m = m1‖m2 be a 2n-bit message within the Feistel network. Let m′ = (m1 ⊕
F (k,m2))‖m2 be the result of applying F .

Construct a matrix C(k) such that m′ = C(k)m for all m.

Hint: Try to first write down a formula (involving a sum) for the i-th bit of m′.
Then you can read off the definition of C(k). C(k) may depend on A(k).

(c) Give a formula for the matrix D(k) such that D(k)m = E(k,m) for all m. D(k) may
depend on B and C(k).

(d) Let mi be the message 0 . . . 010 . . . 0 with 1 on the i-th position. What is D(k)mi?
How can we reconstruct the whole matrix D(k) given D(k)mi for all i (efficiently)?

Note: You do not actually need the formulas derived in the previous steps. The only
reason for finding those formulas was to show that the matrix D(k) exists at all.

(e) You are given a ciphertext c = E(k,m) and you are allowed to make chosen plaintext
queries (i.e., you may ask for E(k,m′) for any message m′). How do you find out m?

Hint: Find D(k) first.

(f) Explain why DES is susceptible to the attack described above if the S-boxes are
linear.1

Problem 2: Security definitions

Your task is to write a security definition in Python (or another language, but we provide
a template in Python). The goal of this is to give you a better understanding what
security definitions mean, besides just being formulas. We illustrate this by writing the
security definition of PRGs in Python:

#!/usr/bin/python3

For simplicity, we fix domain and range of PRGs here:
The domain is the set of 32-bit integers
The random is the set of ten-element lists of 32-bit integers
(equivalent to 320-bit integers)

import random

A very bad pseudo-random generator
Seed is supposed to be a 32-bit integer
Output is a ten element list of 32-bit integers
def G(seed):

return [4267243**i*seed % 2**32 for i in range(1,11)]

The game: it gets a prg and an adversary as arguments
def prg_game(G,adv):

b = random.randint(0,1) # Random bit
seed = random.randint(0,2**32-1) # Random seed
rand = [random.randint(0,2**32-1) for i in range(10)] # Truly random output
if b==0: badv = adv(G(seed))
else: badv = adv(rand)
return b==badv

def adv(rand):
if rand[1]==4267243*rand[0] % 2**32: return 0
else: return 1

def test_prg(G,adv):
num_true = 0
num_tries = 100000
for i in range(num_tries):

1I.e., for each S-box, each output bit is a linear combination of the input bits.

2

if prg_game(G,adv): num_true += 1
ratio = float(num_true)/num_tries
print(ratio)

An output near 0.5 means no attack
An output neat 0.0 or 1.0 means a successful attack
test_prg(G,adv)

Here G is an implementation of a pseudo-random generator (a rather bad one). And
prg_game is a function that implements the game from the security definition of PRGs.
That is, it takes a PRG G, and an adversary adv, and calls adv either with randomness
or the output of G. If the adversary guesses correctly which of the two was the case,
prg_game returns True, else False.

The function test_prg tries out whether a given adversary is successful or not by
counting how often he guesses right. (Of course, this does not replace a proof: a statistic
does not give certainty, and also we cannot know whether other adversaries are successful.
But it illustrates the use of the security definition.)

We have also written an example adversary adv that breaks the PRG G. For simplicity,
let both the message and the key space consist of 32-bit integers. But note that you are
not supposed to use brute force attacks.

Your task:
(a) Write the security definition for IND-OT-CPA as a Python program. (Recall, in

IND-OT-CPA, the adversary is called twice, so you will need two functions adv1 and
adv2. Also pay attention to the following: the adversary should not be allowed to
output messages that are not in the message space.)

(b) Write an adversary that breaks the encryption scheme enc defined in the source
code below. (This adversary should have a success probability, as measured by
test_indotcpa of at least 0.95.)

Here is a template for your solution. You need to fill in code where there are ???.

#!/usr/bin/python

For simplicity, the message space and the key space consists of 32-bit integers
And the ciphertext space consists of all integers (possibly longer)

import random

A bad encryption scheme
def enc(key,msg):

return key*msg

The IND-OT-CPA game
def indotcpa_game(enc,adv1,adv2):

3

???

The adversary breaking the above encryption scheme
(Consisting of two functions, since the adversary is invoked twice by the game)
def adv1():

???
def adv2(c):

???

def test_indotcpa(enc,adv1,adv2):
num_true = 0
num_tries = 100000
for i in range(num_tries):

if indotcpa_game(enc,adv1,adv2): num_true += 1
ratio = num_true/num_tries
print(ratio)

An output near 0.5 means no attack
An output neat 0.0 or 1.0 means a successful attack
test_indotcpa(enc,adv1,adv2)

Problem 3: Reduction proofs

In the lecture, when we proved that E(k,m) := G(k)⊕m is (τ −O(n), 2ε)-IND-OT-CPA
secure when G is an (τ, ε)-PRG, we left the following claim unproven:∣∣Pr[b = 1 : Game 1]− Pr[b = 1 : Game 2]

∣∣ ≤ ε (1)

where

Game 1. k $← K, (m0,m1)← A(), c← G(k)⊕m0, b← A(c). �
and

Game 2. p $←M , (m0,m1)← A(), c← p⊕m0, b← A(c). �
and A is a (τ −O(n))-time adversary and n is the length of G(k).2

We said that (1) follows from the fact that G is a (τ, ε)-PRG, and that means that
G(k) in Game 1 cannot be distinguished from p in Game 2 by definition of PRGs.

We will now prove this formally:

Proof of (1). We define an algorithm B(p) that performs the following steps:
(m0,m1)← A(), c← 1 , b← A(c), return b.

2This is formally not meaningful because O(n) just stands for some function f ∈ O(n), but we have
not specified which. A precise proof would specify concretely which function f it is but we skip this in
order not to get too much into machine-model dependent details.

4

Consider the following game:

Game 3. k $← K, p← G(k), b← B(p). �
By unfolding the definition of B, and reordering of some of the program steps, we
immediately see that Game 1 and Game 3 do the same, formally

Pr[b = 1 : Game 1] = Pr[b = 1 : Game 3] (2)

Furthermore, the step c← p⊕m0 takes 2 runtime steps. Since A is a (τ−O(n))-time
algorithm, this implies that B is a τ -time algorithm.

Consider the following game:

Game 4. 3 , b← B(p). �
Since B is a τ -time algorithm, and since G is a (τ, ε)-PRG, by definition of PRGs we

have ∣∣Pr[b = 1 : Game 3]− Pr[b = 1 : Game 4]
∣∣ ≤ 4 . (3)

Finally, by 5 , we show

Pr[b = 1 : Game 2] = Pr[b = 1 : Game 4]. (4)

From 6 , we immediate conclude (1). �

Task: Fill in the gaps. (The length of the boxes gives no indication of the length of the
missing text.)

5

