Cryptology I (spring 2018) Dominique Unruh

Exercise Sheet 3

Out: 2018-03-08 Due: 2018-03-16

Problem 1: One-time-pad in CBC mode

Assume someone uses the one-time pad in CBC mode. That is, the block cipher is
E(k, mpioer) := k ® mypjoer, and that block cipher is used in CBC mode.

(a) Assume a message m = mql||mz|ms||m4 is encrypted where all m; = mo = ms = my
are blocks consisting only of only zeroes.

What is the resulting ciphertext? (That is, give an explicit simple formula for each of
the ciphertext blocks.)

(b) Assume a message m = my|mg|ms|ma is encrypted. What is the resulting ci-
phertext? (Give a formula in terms of the mq,mg, ms, my, simplified as much as
possible.)

(c) Explain how to compute ms @ my from the resulting ciphertext. (Without using the
key.)

(d) Explain why the above implies that the one-time pad in CBC mode is not IND-CPA
secure (not even IND-OT-CPA).

Problem 2: “Inverse” CBC

Consider the following mode of operation (which I call “inverse CBC”):

To encrypt a message m consisting of blocks m1,...,m, with key k, pick a random
initialization vector v and then compute ¢; := Ey(k, m1) @ iv and ¢; := Eo(k, m;) @ m;_1
for i =2,...,n. Here Ejy is the block cipher. And E(k,m) := wl|ci|| ... | cn-

The adversary has intercepted a ciphertext ¢ = E(k, m). He happens to know the last
block m,, of m (e.g., because that one is prescribed by the protocol).

(a) Explain how the adversary can completely decrypt m. He can make chosen plaintext
queries (i.e., he can ask for encryptions of arbitrary message m’). He cannot make
decryption queries.

Hint: First think how you can, e.g., find out Ey(k, m,,) by performing an encryption
query E(k,my).

(b) Suggest how to fix the mode of operation so that it becomes secure at least again
this attack (and simple modifications thereof). You do not need to prove security.

Problem 3: Breaking ECB (Bonus points)

In the lecture we have seen that encrypting a file with ECB mode is not very secure. For
example, if an uncompressed image file is encrypted, the result may still reveal much of
the picture to the naked eye.

In this exercise, we consider the task of distinguishing the encryption of two given

messages mg, mj automatically. That is, assume that two messages mg, m; (English texts)
of the same length are given and known to the adversary. Furthermore, the adversary
learns ¢, which is the ECB encryption of mg or m; (using a random and unknown key k).
The adversary is now supposed to guess which message was encrypted. (L.e., we have a
known plaintext attack, not a chosen plaintext attack.)

(a)

Describe an algorithm that finds out (given mg, mi, ¢) whether mg or m; was
encrypted. It should work on “typical” text files. (That is, it should not require, e.g.,
one of the text files to contain only spaces or similar.)

Example of “typical” text files are ecb-distinguish-1.txt and
ecb-distinguish-2.txt from the lecture webpage.

Implement the algorithm. That is, fill in the missing code for the function adv in the
code below (also available on the lecture webpage):

#!/usr/bin/python3
"Crypto" might need "pip install pycrypto" if it’s not installed

import Crypto, random
from Crypto.Cipher import AES

def int_to_bytes(i,len): # Not optimized
res = []
for j in range(len):
res.append (i%256)
i = 1i>>8
return bytes(res)

def aes_ecb_enc(k,m):
from Crypto import Random
assert isinstance(m,bytes)
assert len(m)%AES.block_size == 0, len(m)%AES.block_size
k = int_to_bytes(k,AES.block_size)
cipher = AES.new(k, AES.MODE_ECB)
return cipher.encrypt(m)

def aes_ecb_dec(k,m):

from Crypto import Random

assert isinstance(m,bytes)

k = int_to_bytes(k,AES.block_size)
cipher = AES.new(k, AES.MODE_ECB)
return cipher.decrypt (m)

Just a test
assert aes_ecb_dec(2123414234 ,aes_ecb_enc(2123414234,b’hello there test’)) == b’hello -

The game: it gets a prg and an adversary as arguments,
as well as the messages to be distinguished

def

def

def

guessing_game(adv,m0,ml):

b = random.randint(0,1) # Random bit

k = random.getrandbits(256) # Random AES key

seed = random.randint(0,2**32-1) # Random seed

rand = [random.randint(0,2**32-1) for i in range(10)] # Truly random output
msg = (mO,m1) [b]

ciph = aes_ecb_enc(k,msg)

badv = adv(ciph)

return b==badv

adv(ciph):
blocks contains the ciphertext as a list of blocks
blocks = [ciph[i*AES.block_size: (i+1)*AES.block_size] for i in range(len(ciph)//AE!

s

return 77?7 # return 0 or 1

test_adv(adv) :
num_true = 0
num_tries = 3000
m0 = open("ecb-distinguish-1.txt","rb").read()
ml = open("ecb-distinguish-2.txt","rb").read()
for i in range(num_tries):

#if 1%100==0: print(str(i)+"...")

if guessing_game(adv,mO,ml): num_true += 1
ratio = float(num_true)/num_tries
print(ratio)

An output near 0.5 means no attack

An output neat 0.0 or 1.0 means a successful attack
test_adv(adv)

