Problem 1: Textbook RSA and hybrid encryption

A common variant of textbook RSA is the following: During key generation, the modulus $N$ is chosen as usual. We chose $e$ as $e := 3$ (instead of random). Then $d$ is chosen with $ed \equiv 1 \mod \varphi(N)$ (as usual). This is implemented by the Python functions $\text{rsa\_keygen}$, $\text{rsa\_enc}$, $\text{rsa\_dec}$ below.

We use this in a “hybrid encryption”, which first picks an AES key $k$, encrypts it with RSA, and then encrypts the actual message with AES using the key $k$. (Functions $\text{hyb\_enc}$, $\text{hyb\_dec}$.)

Your task is to write an adversary that, given the public key $pk$, and the hybrid encryption $c$ of some message $m$, finds $m$. That is, fill in the function body of the function $\text{adv}$ below so that the function $\text{test\_adv}$ prints Success. The adversary broke the scheme.

Hint: We discuss/discussed in the practice the problem with RSA with $e = 3$ when RSA-encrypting short messages.

(You find the following file on the lecture webpage, too.)

```python
#!/usr/bin/python3

# Use "pip install sympy" (possibly with sudo) to install sympy
# And "Crypto" might need "pip install pycrypto" if it's not installed

import sympy, math, Crypto, random

prime_len = 1024

def egcd(a, b):
    if a == 0:
        return (b, 0, 1)
    else:
        g, y, x = egcd(b % a, a)
        return (g, x - (b // a) * y, y)

def modinv(a, m):
    g, x, y = egcd(a, m)
    if g != 1:
        raise Exception('modular inverse does not exist')
```
else:
    return x % m

def rsa_keygen():
    while True:
        try:
            p = sympy.ntheory.generate.randprime(2**prime_len,2**(prime_len+1))
            q = sympy.ntheory.generate.randprime(2**prime_len,2**(prime_len+1))
            e = 3
            N = p*q
            phiN = (p-1)*(q-1)
            pk=(N,e)
            sk=(N,modinv(e,phiN))
            return (pk,sk)
        except Exception as e:
            pass

# Rough ad-hoc algorithm, not optimized

def exp_mod(a,e,N):
    res = 1
    b = a
    i = 0
    while e>=2**i: # Invariant: b=a**(2**i)
        if e & 2**i != 0:
            e -= 2**i
            res = (res*b) % N
            b=(b*b) % N
            i += 1
        assert e==0
    return res

# Just a test
assert exp_mod(23123,323,657238293) == ((23123**323) % 657238293)

def rsa_enc(pk,m):
    (N,e) = pk
    return exp_mod(m,e,N)

def rsa_dec(sk,c):
    (N,d) = sk
    return exp_mod(c,d,N)

def int_to_bytes(i,len): # Not optimized
res = []
for j in range(len):
    res.append(i%256)
    i = i>>8
return bytes(res)

def aes_cbc_enc(k,m):
    from Crypto.Cipher import AES
    from Crypto import Random
    assert len(m)%AES.block_size == 0
    k = int_to_bytes(k,AES.block_size)
    iv = Random.new().read(AES.block_size)
    cipher = AES.new(k, AES.MODE_CBC, iv)
    return iv + cipher.encrypt(m)

def aes_cbc_dec(k,m):
    from Crypto.Cipher import AES
    from Crypto import Random
    k = int_to_bytes(k,AES.block_size)
    iv = m[:AES.block_size]
    cipher = AES.new(k, AES.MODE_CBC, iv)
    return cipher.decrypt(m[AES.block_size:]),

# Just a test
assert aes_cbc_dec(2123414234,aes_cbc_enc(2123414234,b'hello there test')) == b'hello there test'

def hyb_enc(pk,m):
    assert isinstance(m,bytes)
    k = random.getrandbits(256)
    aes_k_m = aes_cbc_enc(k,m)
    assert m == aes_cbc_dec(k,aes_k_m)
    rsa_pk_k = rsa_enc(pk,k)
    return (rsa_pk_k,aes_k_m)

def hyb_dec(sk,c):
    (c1,c2) = c
    k = rsa_dec(sk,c1)
    m = aes_cbc_dec(k,c2)
    return m

def adv(pk,c):
    m = b"put the right message here"
    return m
def test_adv():
    (pk, sk) = rsa_keygen()
    # Generate a message m
    m = b"a few random words to be shuffle randomly to get some interesting ciphertext not really much sense in it but seemed fun to do instead of random bits etc bla bla".split()
    random.shuffle(m)
    m = b" ".join(m)
    # Get a key pair
    (pk, sk) = rsa_keygen()
    # Encrypt m
    c = hyb_enc(pk, m)
    # Just a test
    assert m == hyb_dec(sk, c)
    # Call the adversary, let him guess m
    m2 = adv(pk, c)
    assert isinstance(m2, bytes)
    # Check
    if m == m2:
        print("Success. The adversary broke the scheme")
    else:
        print("*** Failure ***")

test_adv()

Problem 2: Malleability of textbook RSA

The adversary get a textbook RSA encryption \( c = E(pk, m) \) for some unknown message \( m \). The adversary also knows \( pk = (N, e) \). The adversary wants to compute \( c' = E(pk, 2m) \). (This is a specific example of malleability.) How can the adversary efficiently compute \( c' \) from \( c \) and \( pk \)?

You may assume that \( 0 \leq m < N/2 \).

Problem 3: Security proofs (bonus problem)

Recall the definition of IND-OT-CPA [Definition 3 in the lecture notes]. There, we defined security by saying that if the adversary cannot distinguish between an encryption of \( m_0 \) and \( m_1 \) in the sense that it will output 1 will almost the same probability in both cases.

Consider the following variant of the definition:

Definition 1 (IND-OT-CPA – variant) An encryption scheme \((KG, E, D)\) is \((\tau, \varepsilon)\)-
IND-OT-CPA’ secure if for any \(\tau\)-time algorithm \(A\) we have that
\[
|\Pr[b^* = b : b \sim \{0, 1\}, k \leftarrow KG(), (m_0, m_1) \leftarrow A(), c \leftarrow E(k, m_b), b^* \leftarrow A(c)] - \frac{1}{2}| \leq \varepsilon.
\]
(Here we quantify only over algorithms \(A\) that output \((m_0, m_1)\) with \(|m_0| = |m_1|\).)

That is, the message \(m_b\) is encrypted (with \(b\) random), and we want that the adversary cannot guess \(b\) with probability much different from \(\frac{1}{2}\). (Guessing with probability \(\frac{1}{2}\) is always possible since \(b\) is just a single bit.)

We wish to prove that if \((KG, E, D)\) is \((\tau, \varepsilon)\)-IND-OT-CPA’ secure, then \((KG, E, D)\) is \((\tau, 2\varepsilon)\)-IND-OT-CPA secure.

**Note:** The converse also holds, but we will not prove that.

(a) Assume an adversary \(A\) that breaks \((\tau, 2\varepsilon)\)-IND-OT-CPA security. Let
\[
\alpha_0 := \Pr[b^* = 1 : k \leftarrow KG(), (m_0, m_1) \leftarrow A(), c \leftarrow E(k, m_0), b^* \leftarrow A(c)]
\]
and
\[
\alpha_1 := \Pr[b^* = 1 : k \leftarrow KG(), (m_0, m_1) \leftarrow A(), c \leftarrow E(k, m_1), b^* \leftarrow A(c)].
\]

What do we know about \(\alpha_0\) and \(\alpha_1\) (by definition of IND-OT-CPA and the fact that \(A\) breaks IND-OT-CPA)?

(b) Compute
\[
\beta := |\Pr[b' = b : k \leftarrow KG(), b \sim \{0, 1\}, (m_0, m_1) \leftarrow A(),
\]
\[
c \leftarrow E(k, m_b), b' \leftarrow A(c)] - \frac{1}{2}|.
\]
(As a formula using \(\alpha_0\) and \(\alpha_1\).)

(c) Using (a) and (b), show that if \(A\) breaks \((\tau, 2\varepsilon)\)-IND-OT-CPA, then \(A\) breaks \((\tau, \varepsilon)\)-IND-OT-CPA’. (Hence: IND-OT-CPA’ implies IND-OT-CPA.)

---

\(^1\)This is not an established name!