Problem 1: Textbook RSA and hybrid encryption

A common variant of textbook RSA is the following: During key generation, the modulus \(N \) is chosen as usual. We chose \(e \) as \(e := 3 \) (instead of random). Then \(d \) is chosen with \(ed \equiv 1 \mod \varphi(N) \) (as usual). This is implemented by the Python functions \(\text{rsa_keygen} \), \(\text{rsa_enc} \), \(\text{rsa_dec} \) below.

We use this in a “hybrid encryption”, which first picks an AES key \(k \), encrypts it with RSA, and then encrypts the actual message with AES using the key \(k \). (Functions \(\text{hyb_enc} \), \(\text{hyb_dec} \).)

Your task is to write an adversary that, given the public key \(\text{pk} \), and the hybrid encryption \(c \) of some message \(m \), finds \(m \). That is, fill in the function body of the function \(\text{adv} \) below so that the function \(\text{test_adv} \) prints Success. The adversary broke the scheme.

Hint: We discuss/discussed in the practice the problem with RSA with \(e = 3 \) when RSA-encrypting short messages.

(You find the following file on the lecture webpage, too.)

```python
#!/usr/bin/python3

# Use "pip install sympy" (possibly with sudo) to install sympy
# And "Crypto" might need "pip install pycrypto" if it's not installed

import sympy, math, Crypto, random

prime_len = 1024

# Copied from http://stackoverflow.com/questions/4798654/modular-multiplicative-inverse-fu
def egcd(a, b):
    if a == 0:
        return (b, 0, 1)
    else:
        g, y, x = egcd(b % a, a)
        return (g, x - (b // a) * y, y)
def modinv(a, m):
    g, x, y = egcd(a, m)
    if g != 1:
        raise Exception('modular inverse does not exist')
```
else:
 return x % m

def rsa_keygen():
 while True:
 try:
 p = sympy.ntheory.generate.randprime(2**prime_len, 2**(prime_len+1))
 q = sympy.ntheory.generate.randprime(2**prime_len, 2**(prime_len+1))
 e = 3
 N = p*q
 phiN = (p-1)*(q-1)
 pk=(N,e)
 sk=(N,modinv(e,phiN))
 return (pk,sk)
 except Exception as e:
 pass

Rough ad-hoc algorithm, not optimized
def exp_mod(a,e,N):
 res = 1
 b = a
 i = 0
 while e>=2**i: # Invariant: b=a**(2**i)
 if e & 2**i != 0:
 e -= 2**i
 res = (res*b) % N
 b=(b*b) % N
 i += 1
 assert e==0
 return res

Just a test
assert exp_mod(23123, 323, 657238293) == ((23123**323) % 657238293)

def rsa_enc(pk,m):
 (N,e) = pk
 return exp_mod(m,e,N)

def rsa_dec(sk,c):
 (N,d) = sk
 return exp_mod(c,d,N)

def int_to_bytes(i,len): # Not optimized
res = []
for j in range(len):
 res.append(i%256)
 i = i>>8
return bytes(res)

def aes_cbc_enc(k,m):
 from Crypto.Cipher import AES
 from Crypto import Random
 assert len(m)%AES.block_size == 0
 k = int_to_bytes(k,AES.block_size)
 iv = Random.new().read(AES.block_size)
 cipher = AES.new(k, AES.MODE_CBC, iv)
 return iv + cipher.encrypt(m)

def aes_cbc_dec(k,m):
 from Crypto.Cipher import AES
 from Crypto import Random
 k = int_to_bytes(k,AES.block_size)
 iv = m[:AES.block_size]
 cipher = AES.new(k, AES.MODE_CBC, iv)
 return cipher.decrypt(m[AES.block_size:])

 # Just a test
 assert aes_cbc_dec(2123414234,aes_cbc_enc(2123414234,b'hello there test')) == b'hello there test'

 def hyb_enc(pk,m):
 assert isinstance(m,bytes)
 k = random.getrandbits(256)
 aes_k_m = aes_cbc_enc(k,m)
 assert m == aes_cbc_dec(k,aes_k_m)
 rsa_pk_k = rsa_enc(pk,k)
 return (rsa_pk_k,aes_k_m)

 def hyb_dec(sk,c):
 (c1,c2) = c
 k = rsa_dec(sk,c1)
 m = aes_cbc_dec(k,c2)
 return m

 def adv(pk,c):
 m = b"put the right message here"
 return m

3
def test_adv():
 (pk, sk) = rsa_keygen()
 # Generate a message m
 m = b"a few random words to be shuffle randomly to get some interesting ciphertext not
 random.shuffle(m)
 m = b" ".join(m)
 # Get a key pair
 (pk, sk) = rsa_keygen()
 # Encrypt m
 c = hyb_enc(pk, m)
 # Just a test
 assert m == hyb_dec(sk, c)
 # Call the adversary, let him guess m
 m2 = adv(pk, c)
 assert isinstance(m2, bytes)
 # Check
 if m == m2:
 print("Success. The adversary broke the scheme")
 else:
 print("*** Failure ***")
test_adv()

Problem 2: Malleability of textbook RSA

The adversary get a textbook RSA encryption $c = E(pk, m)$ for some unknown message m. The adversary also knows $pk = (N, e)$. The adversary wants to compute $c' = E(pk, 2m)$. (This is a specific example of malleability.) How can the adversary efficiently compute c' from c and pk?

You may assume that $0 \leq m < N/2$.

Problem 3: Security proofs (bonus problem)

Recall the definition of IND-OT-CPA (Definition 3 in the lecture notes). There, we defined security by saying that if the adversary cannot distinguish between an encryption of m_0 and m_1 in the sense that it will output 1 will almost the same probability in both cases.

Consider the following variant of the definition:

Definition 1 (IND-OT-CPA – variant) An encryption scheme (KG, E, D) is (τ, ε)-
IND-OT-CPA' secure\[^1\] if for any \(\tau\)-time algorithm \(A\) we have that

\[
|\Pr[b^* = b : b \stackrel{\$}{\leftarrow} \{0, 1\}, k \leftarrow KG(), (m_0, m_1) \leftarrow A(), c \leftarrow E(k, m_b), b^* \leftarrow A(c)] - \frac{1}{2}| \leq \varepsilon.
\]

(Here we quantify only over algorithms \(A\) that output \((m_0, m_1)\) with \(|m_0| = |m_1|\).)

That is, the message \(m_b\) is encrypted (with \(b\) random), and we want that the adversary cannot guess \(b\) with probability much different from \(\frac{1}{2}\). (Guessing with probability \(\frac{1}{2}\) is always possible since \(b\) is just a single bit.)

We wish to prove that if \((KG, E, D)\) is \((\tau, \varepsilon)\)-IND-OT-CPA' secure, then \((KG, E, D)\) is \((\tau, 2\varepsilon)\)-IND-OT-CPA secure.

Note: The converse also holds, but we will not prove that.

(a) Assume an adversary \(A\) that breaks \((\tau, 2\varepsilon)\)-IND-OT-CPA security. Let

\[
\alpha_0 := \Pr[b^* = 1 : k \leftarrow KG(), (m_0, m_1) \leftarrow A(), c \leftarrow E(k, m_0), b^* \leftarrow A(c)]
\]

and

\[
\alpha_1 := \Pr[b^* = 1 : k \leftarrow KG(), (m_0, m_1) \leftarrow A(), c \leftarrow E(k, m_1), b^* \leftarrow A(c)].
\]

What do we know about \(\alpha_0\) and \(\alpha_1\) (by definition of IND-OT-CPA and the fact that \(A\) breaks IND-OT-CPA)?

(b) Compute

\[
\beta := |\Pr[b' = b : k \leftarrow KG(), b \stackrel{\$}{\leftarrow} \{0, 1\}, (m_0, m_1) \leftarrow A(),
 c \leftarrow E(k, m_b), b' \leftarrow A(c)] - \frac{1}{2}|.
\]

(As a formula using \(\alpha_0\) and \(\alpha_1\).)

(c) Using (a) and (b), show that if \(A\) breaks \((\tau, 2\varepsilon)\)-IND-OT-CPA, then \(A\) breaks \((\tau, \varepsilon)\)-IND-OT-CPA'. (Hence: IND-OT-CPA' implies IND-OT-CPA.)

\[^1\]This is not an established name!