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Problem 1: Malleability of ElGamal

Remember the auction example from the lecture: Bidder 1 produces a ciphertext c =
E(pk , bid1) where E is the ElGamal encryption algorithm (using integers mod p as the
underlying group). Given c, Bidder 2 can then compute c′ such that c′ decrypts to
2 · bid1 mod p. This allows Bidder 2 to consistently bid twice as much as Bidder 1.1

Now refine the attack. You may assume that bid1 is the amount of Cents Bidder 1
is willing to pay. And you can assume that Bidder 1 will always bid a whole number of
Euros. (I.e., bid1 is a multiple of 100.)

Show how Bidder 2 can consistently overbid Bidder 1 by only 1%. What happens to
your attack if Bidder 1 suddenly does not bid a whole number of Euros?

Hint: Remember that modulo p, one can efficiently find inverses. For example, one can
find a number a such that a · 100 ≡ 1 mod p.

Problem 2: An unsavory group

Recall that ElGamal can be defined with respect to many different groups. Here we give
an example of a group one should not use.

Let p > 0 be a large prime. Let G := {0, . . . , p− 1}. The group operation is defined
as follows: For a, b ∈ G, let a · b := (a+ b mod p).2 Recall that ai for i ∈ N is defined as
ai := a · a · a · a · a · · · · · a (i-times).

(a) What is ai written in terms of +? (I.e., when unfolding the definition of the group
operation, and using modular arithmetic.) This should be quite a simple operation!

1As long as bid1 < p/2, that is. Otherwise 2 · bid1 mod p will not be twice as much as bid1. However,
for large p, bid1 ≥ p/2 is an unrealistically high bid.

2This is notationally highly confusing, of course, because it looks like we claim that plus and times
are the same thing. But keep in mind that we are defining a new operation on G here, and it is just a
notational convention that we write it like multiplication. In particular, do not confuse a · b (the group
operation) with a · b mod p (actual multiplication modulo p). Often one would use the symbol +, but
that would be confusing as well because in our definitions of ElGamal we used multiplicative notation. If
you wish, you can introduce a different symbol for the group operation, say ◦, and then the definition
becomes a ◦ b := (a+ b mod p). You are free to do it either way in your solution, but make sure that you
do not mix up the different meanings of a · b!



(b) Show that there is an efficient algorithm for solving the discrete logarithm problem
in G. That is, given a ∈ G and b := ai ∈ G (but not given i), the algorithm should
compute i.

Note: You can use, without proof, the fact that there is an efficient algorithm
(Extended Euclidean Algorithm, EEA) that, given p and x ∈ {1, . . . , p− 1} computes
y with xy ≡ 1 mod p. (This is multiplication modulo p, not the group operation.
The fact that inverting works for all x uses that p is prime.)

(c) Show that the DDH assumption does not hold for G. (I.e., there is an efficient
algorithm that distinguishes the two games from the definition of the DDH assumption
with probability close to 1.)

(d) Program the algorithms from (b) and (c). You can use the following template:
additive-group.py (on the webpage)

2


