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Problem 1: Hybrid encryption – implementations

(a) Implement a hybrid encryption using ElGamal and AES. You are allowed to use
ready-made ElGamal and AES.

In the contributed file hybrid.py (lecture webpage), you find a prepared template in
Python that already provides function for ElGamal and AES encryption as well as
some utility functions and testing code that you might need. I recommend to use that
code. If you wish to use another language, you will have to find your own ElGamal
and AES routines.

You should check that hybrid_decrypt(sk,hybrid_encrypt(pk,msg)) returns msg.

It is OK if you only allow encrypting messages whose length is a multiple of 16 bytes
(blocklength of AES).

(b) [Bonus problem] The ElGamal implementation used in hybrid.py might leak
whether the message msg is a quadratic residue. Using the methods developed in
??, fix the functions elgamal_encrypt and elgamal_decrypt to avoid this leakage.
(You need to make sure that elgamal_decrypt(sk,elgamal_encrypt(pk,msg)) still
returns msg.)

Problem 2: Encoding messages for ElGamal (bonus problem)

The message space of ElGamal (when using the instantation that operates modulo a
prime p > 2 with p ≡ 3 mod 4 1) is the set QRp = {x2 mod p : x = 0, . . . , p− 1}.

The problem is now: if we wish to encrypt a message m ∈ {0, 1}` (with ` ≤ |p| − 2),
how do we interpret m as an element of QRp?

One possibility is to use the following function f : {1, . . . , p−12 } → QRp:

f(x) :=

{
x if x ∈ QRp

−x mod p if x /∈ QRp

Once we see that f is a bijection and can be efficiently inverted, the problem is solved,
because a bitstring m ∈ {0, 1}` can be interpreted as a number in the range 1, . . . , p−12 by
simply interpreting m as a binary integer and adding 1 to it. (I.e., we encrypt f(m+ 1).)

1You do not actually need to use this fact, but the hint that −1 /∈ QRp below is only true in this case.



We claim that the following function is the inverse of f :

g(x) :=

{
x if x = 1, . . . , p−12
−x mod p if x 6= 1, . . . , p−12

We thus need to show the following: the range of f is indeed QRp, and that g(f(x)) = x

for all x ∈ {1, . . . , p−12 }.

(a) Show that f(x) ∈ QRp for all x ∈ {1, . . . , p−12 }.

Hint: You can use (without proof) that −1 /∈ QRp (this only holds in QRp for p
prime with p ≡ 3 mod 4). And that the product of two quadratic non-residues is a
quadratic residue (this only holds in QRp, but not in QRn for n non-prime).

(b) Show that g(f(x)) = x for all x ∈ {1, . . . , p−12 }.
(This then shows that f is injective and efficiently invertible. Bijectivity follows from
injectivity because the domain and range of f both have the same size.)

Hint: Make a case distinction between x ∈ QRp and x /∈ QRp. Show that for
x ∈ {1, . . . , p−12 } it holds that −x mod p /∈ {1, . . . , p−12 }.

Problem 3: Authentication in WEP

In the WEP-protocol (used for securing Wifi, now mostly replaced by WPA), messages are
“encrypted” using the following procedure: First, a key k is established between the parties
A and B. (We do not care how, for the purpose of this exercise we assume that this is
done securely.) Then, to transmit a message m, A chooses an initialization vector IV
(we do not care how) and sends IV and c := keystream ⊕ (m‖CRC (m)). Here keystream
is the RC4 keystream computed from IV and k (we do not care how).

The function CRC is a so-called cyclic redundancy check, a checksum added to the
WEP protocol to ensure integrity. We only give the important facts about CRC and omit
a full description. Each bit of CRC (m) is the XOR of some of the message bits. Which
messages bits are XORed into which bit of CRC (m) is publicly known. (In other words,
the i-th bit of CRC (m) is

⊕
j∈Ii mj for a publicly known Ii.)

An adversary intercepts the ciphertext c. He wishes to flip certain bits of the message
(i.e., he wants to replace m by m ⊕ p for some fixed p). This can be done by flipping
the corresponding bits of the ciphertext c. But then, the CRC will be incorrect, and B
will reject the message after decryption! Thus the CRC seems to ensure integrity of the
message and to avoid malleability. (This is probably why the designers of WEP added it
here.)

Show that the CRC does not increase the security! That is, show how the adversary
can modify the ciphertext c such that c becomes an encryption of m⊕ p and such that
the CRC within c is still valid (i.e., it becomes the CRC for m⊕ p).

Hint: Think of how the i-th bit of CRC (m ⊕ p) relates to the i-th bit of CRC (m).
(Linearity!)
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Problem 4: Collisions in Iterated Hash

Let E be a block cipher with n-bit keys and messages. Assume the following compression
function:

F (x‖y) := E(y, x)⊕ x.

(y is used as the key for E.) This is a very slight variation of the Davies-Meyer compression
function.

Let H be the Iterated Hash construction using compression function F .
Assume the designer of the standard happens to have chosen the initialization vector

iv as iv := D(z, 0) for random z. (Here D is the decryption corresponding to E.) The
designer justified this with the fact that this basically leads to a random iv .

Describe how to (efficiently) find a collision for H.

Note: You can assume that you know which z the designer used.

Hint: First explain how to efficiently construct x∗ as describe in the lecture in the
attack on Iterated Hash.
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