Problem 1: MACs and encryption

Consider the following symmetric encryption scheme (KG, E, D). KG chooses an AES key. $E(k, m) := E_{AES}(k, m)\|0^{32}$. $(0^{32}$ stands for a string consisting of 32 zeros.) And the decryption $D(k, c)$ does the following: Let $c'\|p := c$ where p has length 32 bit and c' is all but the last 32 bits of c. $m := D_{AES}(k, c')$. If $p = 0^{32}$, then $D(k, c)$ returns m. If $p \neq 0^{32}$ and $k_p = 0$ (here k_p is the p-th bit of the key k), then $D(k, c)$ returns m. If $p \neq 0^{32}$ and $k_p = 1$, then $D(k, c)$ aborts.

(a) Show that (KG, E, D) can be totally broken using a chosen ciphertext attack. That is, show that it is possible to recover the key k using a chosen ciphertext attack.

(b) To avoid the issue, we try to use authentication: Let MAC be an EF-CMA secure MAC. We construct a new encryption scheme E'. The key of this scheme consists of an AES key k_1 and a MAC-key k_2. Encryption is as follows: $E'(k_1, k_2, m) := E(k_1, (MAC(k_2, m), m))$. Decryption D' checks the tag $MAC(k_2, m)$ and aborts if it is incorrect. (This is called MAC-then-encrypt.) Does E' withstand chosen ciphertext attacks that reveal the whole key k_1? If yes, explain why (without proof). If no, how to attack?

(c) We try to use authentication in another way: Let MAC be an EF-CMA secure MAC. We construct a new encryption scheme E''. The key of this scheme consists of an AES key k_1 and a MAC-key k_2. Encryption is as follows: $E''(k_1, k_2, m) := MAC(k_2, c)\|c$ with $c := E(k_1, m)$. Decryption D' checks the tag $MAC(k_2, c)$ and aborts if it is incorrect. (This is called encrypt-then-MAC.) Does E'' withstand chosen ciphertext attacks that reveal the whole key k_1? If yes, explain why (without proof). If no, how to attack?

Hint: One of (b), (c) is secure, the other is insecure.

1. In a chosen ciphertext attack, the adversary is also allowed to submit plaintexts for encryption, not only ciphertexts for decryption.
2. We assume that you cannot distinguish between an abort due to a wrong tag or an abort of the underlying algorithm D.
3. We assume that you cannot distinguish between an abort due to a wrong tag or an abort of the underlying algorithm D.