Cryptology I (spring 2018)

Dominique Unruh

Exercise Sheet 7

Out: 2018-04-05

Due: 2018-04-13

Problem 1: MACs and encryption

Consider the following symmetric encryption scheme (KG, E, D). KG chooses an AES key. $E(k,m) := E_{AES}(k,m) ||0^{32}$. $(0^{32} \text{ stands for a string consisting of 32 zeros.})$ And the decryption D(k,c) does the following: Let c'||p := c where p has length 32 bit and c' is all but the last 32 bits of c. $m := D_{AES}(k,c')$. If $p = 0^{32}$, then D(k,c) returns m. If $p \neq 0^{32}$ and $k_p = 0$ (here k_p is the p-th bit of the key k), then D(k,c) returns m. If $p \neq 0^{32}$ and $k_p = 1$, then D(k,c) aborts.

- (a) Show that (KG, E, D) can be totally broken using a chosen ciphertext attack.¹ That is, show that it is possible to recover the key k using a chosen ciphertext attack.
- (b) To avoid the issue, we try to use authentication: Let MAC be an EF-CMA secure MAC. We construct a new encryption scheme E'. The key of this scheme consists of an AES key k_1 and a MAC-key k_2 . Encryption is as follows: $E'(k_1k_2,m) := E(k_1, (MAC(k_2, m), m))$. Decryption D' checks the tag $MAC(k_2, m)$ and aborts if it is incorrect.² (This is called MAC-then-encrypt.)

Does E' withstand chosen ciphertext attacks that reveal the whole key k_1 ? If yes, explain why (without proof). If no, how to attack?

(c) We try to use authentication in another way: Let MAC be an EF-CMA secure MAC. We construct a new encryption scheme E''. The key of this scheme consists of an AES key k_1 and a MAC-key k_2 . Encryption is as follows: $E''(k_1k_2,m) := MAC(k_2,c) || c$ with $c := E(k_1,m)$. Decryption D' checks the tag $MAC(k_2,c)$ and aborts if it is incorrect.³ (This is called encrypt-then-MAC.)

Does E'' withstand chosen ciphertext attacks that reveal the whole key k_1 ? If yes, explain why (without proof). If no, how to attack?

Hint: One of (b), (c) is secure, the other is insecure.

¹In a chosen ciphertext attack, the adversary is also allowed to submit plaintexts for encryption, not only ciphertexts for decryption.

 $^{^2 \}rm We$ assume that you cannot distinguish between an abort due to a wrong tag or an abort of the underlying algorithm D.

³We assume that you cannot distinguish between an abort due to a wrong tag or an abort of the underlying algorithm D.