Problem 1: Birthday attack

Implement a birthday attack for a hash function with 48 bit output. The python code in `birthday.py` contains template code, fill in the code for the function `find_collision`.

Problem 2: One-way functions

Which of the following are one-way functions? For each function that is a one-way function, explain why (no formal proof required). For each function that is not a one-way function, write an attack in Python. (Code for all the functions, including test code is provided in `owf.py`. You only need to fill in the functions `adv_i` for attacking function f_i.)

Hint: Out of the four functions, one is a OWF, the other three are not.

Note: Formally, of course, the question would have to be “is the function a (τ, ε)-OWF?” and τ and ε would have to be specified. I am omitting specific τ and ε, instead, you are to interpret “is an OWF” as “there is no attack in reasonable time and with reasonable success probability”.

Note: You may assume that the RSA assumption holds. And that E_{AES} is a PRF. (For reasonable τ, ε, again.)

Note: Remember that to break a one-way function, it is sufficient to find some preimage, not necessarily the “true” one that was fed into the one-way function.

(a) $f_1(x) := 0$ for all $x \in \{0, 1\}^n$.

(b) $f(N, e, x) := (N, e, x^e \mod N)$ where the domain of f is the set of all (N, e, x) where N is an RSA modulus, e is relatively prime to N, and $x \in \{0, \ldots, N-1\}$.

(c) $f(N, e, x) := x^e \mod N$ where the domain of f is the set of all (N, e, x) where N is an RSA modulus, e is relatively prime to N, and $x \in \{0, \ldots, N-1\}$.

(d) $f(k, x) := E_{AES}(k, x)$.