
Cryptology I (spring 2018) Dominique Unruh

Exercise Sheet 9

Out: 2018-04-19 Due: 2018-04-27

Problem 1: Tree-based signatures

This problem refers to the tree-based construction of signature schemes from one-time
signatures from Construction 4 in the lecture notes. You may assume that Lamport’s
signature scheme (Construction 2 in the lecture notes) is used as the underlying one-time
signature scheme. (Where all messages are first hashed with a hash function H before
signing with Lamport’s scheme in order to fit in the message space.)

(a) As a warmup, let’s attack Lamport’s scheme. Assume Alice is sending random
messages m, together with signatures σ := SignLamport(sk ,m). Alice uses, though
she should know better, the same sk for all messages m. (I am not specifying how
many messages Alice sends and signs, you can assume that there are enough of them
for your attack.)

The adversary gets all messages m and all corresponding signatures σ.

Describe how to efficiently compute sk from the received m,σ.

Note: Be explicit: describe all the actions and computations the adversary has to
perform. (E.g., give the adversary in pseudocode.) It is not sufficient to say something
like: “since two signatures are produced using the same key with a one-time signature
scheme, the adversary can break the scheme”. Remember that the underlying scheme
is Lamport’s one-time signature scheme.

(b) Assume someone has implemented the signature scheme incorrectly as follows: Instead
of using randomness from the pseudorandom function F for the key-generation
algorithm, it runs the key-generation normally (i.e., as probabilistic algorithms, with
fresh randomness each time it is invoked).

Explain how to break the signature scheme. More precisely, show how to sign an
arbitrary message m by performing only signature queries for messages m′ 6= m.

Note: Be explicit: describe all the actions and computations the adversary has to
perform. (E.g., give the adversary in pseudocode.) It is not sufficient to say something
like: “since two signatures are produced using the same key with a one-time signature
scheme, the adversary can break the scheme”. Remember that the underlying scheme
is Lamport’s one-time signature scheme.

(c) Bonus problem: Lamport’s signature scheme has public keys consisting of 2n n-bit
blocks (assuming that the one-way function f has domain and range {0, 1}n). But it



signs only messages consisting of a single n-bit block. In the tree-based construction,
we need to sign two Lamport public keys, i.e., 4n n-bit blocks. Normally we solve this
by converting Lamport’s scheme into a one-time signature scheme for long messages
by hashing the messages to be signed.

Here we explore a different possibility. Instead of hashing the 4n ×
n bits, we XOR the blocks together. That is, from Lamport’s scheme
(KGLamport ,SignLamport ,VerifyLamport) we construct a one-time signature scheme
(KG1,Sign1,Verify1) for 4n× n-bit messages as follows:

KG1 := KGLamport . Sign1(sk ,m1‖ . . . ‖m4n) := SignLamport(sk ,
⊕4n

i=1mi) for
m1, . . . ,m4n ∈ {0, 1}n. Verify1(pk ,m1 . . .m4n, σ) := VerifyLamport(pk ,

⊕4n
i=1mi, σ).

Now we can construct the tree-based signature scheme (KG tree ,Signtree ,Verify tree)
from (KG1,Sign1,Verify1) without needing a hash function (as in Construction 4 in
the lecture notes).

Your task: Break the resulting (KG tree ,Signtree ,Verify tree).

Note: It is not sufficient to just show that (KG1,Sign1,Verify1) is insecure. You
have to break (KG tree ,Signtree ,Verify tree). All the other comments from the note of
(b) also apply.

2


