Cryptology I (spring 2018) Dominique Unruh
Exercise Sheet 10

Out: 2018-05-03 Due: 2018-05-11

Problem 1: Merkle-Damgard and the ROM

In the lecture, I explained the random oracle heuristic which suggests to model a hash
function as a random oracle. It should be added that a (preferable) refinement of this
heuristic is to model the compression function itself as a random oracle, and to model the
hash function as some function constructed based on that compression function (using,
e.g., Merkle-Damgard). The reason behind this is that constructions like Merkle-Damgard
do not produce functions that behave like random functions (even if the underlying
compression function is a random function).

Give an example why a hash function H constructed using the Merkle-Damgard con-
struction should not be modeled as a random oracle. More precisely, find a cryptographic
scheme which is secure when H is a random oracle (no security proof needed), but which
is insecure when H is a Merkle-Damgard construction (even if the compression function
is a random oracle).

Hint: Consider the construction of MACs from hash functions that is insecure when
the hash function is constructed with Merkle-Damgérd. This problem does not need a
complicated construction!

Problem 2: Security proof in the ROM [Bonus problem|]
This is a bonus problem.

Fix a hash function H : {0,1}* — {0,1}". We define the following block cipher with
message and key space {0, 1}™:

e Encryption E: To encrypt m € {0,1}" under key k, choose a random r € {0,1}"

and return the ciphertext ¢ := (r,m @ H (k||r)).

e Decryption D: To decrypt ¢ = (r,c) with key k, compute and return m :=

H(k|r)® .

Below is a proof that this encryption scheme is (7, g, qm, 5)—IND—CPAEI secure in the
random oracle model. Fill in the gaps. (The length of the gaps is unrelated to the length
of the text to be inserted.)

Proof. In the first game, we just restate the game from the IND-CPA security definition
(in the random oracle model).

lgg is the number of encryption oracle queries, and gy the number of random oracle H queries
performed by A.

Game 1. o

To show that the encryption scheme is (7, qg, qm, €)-IND-CPA secure, we need to

show that
Prlp =¥/ {Game 1) - 3| <« 1)

As a first step, we replace the random oracle.

Game 2. Like except that we define the random oracle H differently: o
We have Pr[b =V {Game 1| = Pr[b = b { Game 2].

One can see that the adversary cannot guess the key k (where k is the key used for
encryption in , more precisely, the following happens with probability < qr2™:
“The adversary invokes H (z) with = = k||’ for some /.” (We omit the proof of this fact.)

Let 79 denote the value r that is chosen during the execution of ¢ + EM(k,my)
in Consider the following event: “Besides the query H (k|ro) performed by
c <+ EM(k,my), there is another query H(z) with z = k||ro (performed by the adversary
or by the oracle EH(k7 -).” This event occurs with probability ¢g2™" + gg2~". Namely,

the adversary make such H(x) queries with probability < qg2~"™ because , and
each invocation of the oracle Ef (k,m;) makes such an H(x) query with probability

< 27" because .

Thus, the response of the H (k||ro)-query performed by ¢ < EX (k,m;) is a random
value that is used nowhere else (except with probability < (¢g 4+ ¢g)2™"). Thus, we can
replace that value by some fresh random value.

Game 3. Like except that we replace ¢ < Ef(k,my) by ro & {0,1}",
h* & {0,137, ¢« (ro, my @ h*). o
We have that

Prlb = ¥/ {Game 3) — Prlb — ¥/ {Game 3)| < (a + a5)2 ™" — <.

To get rid of m,, in we use the fact that h* is chosen uniformly at random
and XORed on my. That is, we can replace my @ h* by .

Game 4. Like , except that we replace ¢ < (rg, mp @ h*) by E o

We have that Pr[b = b' { Game 4] = Pr[b = V' {Game 3|. Notice that b is not used in

thus we have that Pr[b =¥ 1 Game 4|] =7 ‘
Combining the equations we have gathered, @ follows. O

Problem 3: Yao’s Garbled Circuits

(a) One application of secure function evaluation is the so-called “dating problem”. Two
parties A and B are wondering whether they should date, but none of them wishes
to admit their interest unless they know that the other side is interested, too. The
solution is to perform a two-party computation on their inputs a and b (where
a and b are a bit corresponding to whether A or B wishes to date) that returns

f(a,b) :=aANb. (We ignore the fact that this is silly: by suggesting to run this SFE,
one already expresses interest. But we could consider a case where some app is doing
this automatically with all potential matches — a privacy preserving dating app.)

A and B want to use Yao’s Garbled Circuits for this. (We ignore the fact that that
protocol only has security against passive adversaries.) That is, A will have to pick
some circuit C, and B some input x for that circuit. What should C' and x be in this
concrete case (i.e., how to convert a and b into C' and z) so that B learns f(a,b)?

Implement part of Yao’s protocol. That is, implement a function make_gate that
garbles a single gate. (Given four input keys, and four messages.) And a function
eval_gate that recovers the message m;; given the corresponding keys.

Use the template in yao-gate.py.

