Problem 1: One-time-pad

(a) In a brute force attack, one tries every possible key k and tries to decrypt the
 ciphertext c using k. When decrypting c using k yields a valid plaintext (e.g., an
 English sentence), one has found the key.

 Given enough time, one can also enumerate all possible keys for the one-time pad.
 Thus, given unlimited computational power, one can apply the brute-force attack to
 the one-time pad. One the other hand, we have proven that the one-time pad has
 perfect secrecy. Thus is should not be possible to break the one-time pad.

 Explain why a brute-force attack fails on the one-time pad (even if one has unlimited
 time).

(b) Write a program that achieves the following: It takes as input two ciphertexts c_1
 and c_2 of the same length. Both are expected to be the encryption of a single word
 m_1, m_2 using the one-time-pad. To produce the ciphertexts, the same key has been
 used. The program then finds m_1 and m_2.

 Consider the following ciphertexts: $c_1 = \text{4A5C45492449552A}$, $c_2 = \text{5A47534D35525F20}$
 (eight bytes each, presented in hex). Figure out the plaintexts using your program.

 Note: On many Linux systems, you find a wordlist in /usr/share/dict/words. Or
 use the file wordlist.txt from the webpage. Please submit a printout of your source
 code and the plaintexts.
Hint: If you use python (version 3.x), you may find the following code snippets useful: `bytes.fromhex("5AC643BE8504E35E")` decodes a hex string. And the following XORs two string bitwise:

```python
def xor_two_words(x, y):
    assert len(x) == len(y)
    assert isinstance(x, bytes)
    assert isinstance(y, bytes)
    return bytes([a ^ b for a, b in zip(x, y)])
```

(c) **[Bonus problem.]** Write a program that does the same as in [b], except that m_1, m_2 are now English sentences.

This is much more difficult, but if you enjoy the challenge, you can do it.

Problem 2: Perfect secrecy

Show that there is no encryption scheme that has perfect secrecy and allows us to reuse the key. More precisely, show that there is no encryption scheme E that satisfies the following definition (and that can be decrypted):

Definition 1 (Perfect secrecy with key reuse) Let K be the set of keys, let M be the set of messages, and let E be the encryption algorithm (possibly randomized) of an encryption scheme. We say the encryption scheme has perfect secrecy with key reuse iff for all n, and all $m_0^{(1)}, \ldots, m_0^{(n)}, m_1^{(1)}, \ldots, m_1^{(n)} \in M$ and for all c_1, \ldots, c_n, we have that

\[
\Pr[\{(c_1, \ldots, c_n) = (c'_1, \ldots, c'_n) : k \xleftarrow{\$} K, c'_1 \leftarrow E(k, m_0^{(1)}), \ldots, c'_n \leftarrow E(k, m_0^{(n)})\}] = \Pr[\{(c_1, \ldots, c_n) = (c'_1, \ldots, c'_n) : k \xleftarrow{\$} K, c'_1 \leftarrow E(k, m_1^{(1)}), \ldots, c'_n \leftarrow E(k, m_1^{(n)})\}]
\]

Hint: If you have an encryption scheme E with perfect secrecy with key reuse, first construct from it a scheme E' with perfect secrecy that has messages longer than keys. (Show that it indeed has perfect secrecy.) Then use [Theorem 1](#) in the lecture notes.