Problem 1: Textbook RSA and hybrid encryption

A common variant of textbook RSA is the following: During key generation, the modulus \(N \) is chosen as usual. We chose \(e \) as \(e := 3 \) (instead of random). Then \(d \) is chosen with \(ed \equiv 1 \mod \varphi(N) \) (as usual). This is implemented by the Python functions `rsa_keygen`, `rsa_enc`, `rsa_dec` below.

We use this in a “hybrid encryption”, which first picks an AES key \(k \), encrypts it with RSA, and then encrypts the actual message with AES using the key \(k \). (Functions `hyb_enc`, `hyb_dec`.)

Your task is to write an adversary that, given the public key \(pk \), and the hybrid encryption \(c \) of some message \(m \), finds \(m \). That is, fill in the function body of the function `adv` below so that the function `test_adv` prints `Success`. The adversary broke the scheme.

Hint: Note that \(k < \sqrt[3]{N} \) here. This makes it much simpler to find \(k \) given \(k^3 \mod N \)!

(You find the following file on the lecture webpage, too.)

```python
#!/usr/bin/python3

# Use "pip install sympy" (possibly with sudo) to install sympy
# And "Crypto" might need "pip install pycrypto" if it's not installed

import sympy, math, Crypto, random

prime_len = 1024

def egcd(a, b):
    if a == 0:
        return (b, 0, 1)
    else:
        g, y, x = egcd(b % a, a)
        return (g, x - (b // a) * y, y)

def modinv(a, m):
    g, x, y = egcd(a, m)
    if g != 1:
        raise Exception('modular inverse does not exist')
    else:
```
return x % m

def rsa_keygen():
 while True:
 try:
 p = sympy.ntheory.generate.randprime(2**prime_len,2**(prime_len+1))
 q = sympy.ntheory.generate.randprime(2**prime_len,2**(prime_len+1))
 e = 3
 N = p*q
 phiN = (p-1)*(q-1)
 pk=(N,e)
 sk=(N,modinv(e,phiN))
 return (pk,sk)
 except Exception as e:
 pass

Rough ad-hoc algorithm, not optimized
def exp_mod(a,e,N):
 res = 1
 b = a
 i = 0
 while e>=2**i: # Invariant: b=a**(2**i)
 if e & 2**i != 0:
 e -= 2**i
 res = (res*b) % N
 b=(b*b) % N
 i += 1
 assert e==0
 return res

Just a test
assert exp_mod(23123,323,657238293) == ((23123**323) % 657238293)

def rsa_enc(pk,m):
 (N,e) = pk
 return exp_mod(m,e,N)

def rsa_dec(sk,c):
 (N,d) = sk
 return exp_mod(c,d,N)

def int_to_bytes(i,len): # Not optimized
 res = []
for j in range(len):
 res.append(i%256)
 i = i>>8
return bytes(res)

def aes_cbc_enc(k,m):
 from Crypto.Cipher import AES
 from Crypto import Random
 assert len(m)%AES.block_size == 0
 k = int_to_bytes(k,AES.block_size)
 iv = Random.new().read(AES.block_size)
 cipher = AES.new(k, AES.MODE_CBC, iv)
 return iv + cipher.encrypt(m)

def aes_cbc_dec(k,m):
 from Crypto.Cipher import AES
 from Crypto import Random
 k = int_to_bytes(k,AES.block_size)
 iv = m[:AES.block_size]
 cipher = AES.new(k, AES.MODE_CBC, iv)
 return cipher.decrypt(m[AES.block_size:])

Just a test
assert aes_cbc_dec(2123414234,aes_cbc_enc(2123414234,b'hello there test')) == b'hello there test'

def hyb_enc(pk,m):
 assert isinstance(m,bytes)
 k = random.getrandbits(256)
 aes_k_m = aes_cbc_enc(k,m)
 assert m == aes_cbc_dec(k,aes_k_m)
 rsa_pk_k = rsa_enc(pk,k)
 return (rsa_pk_k,aes_k_m)

def hyb_dec(sk,c):
 (c1,c2) = c
 k = rsa_dec(sk,c1)
 m = aes_cbc_dec(k,c2)
 return m

def adv(pk,c):
 m = b"put the right message here"
 return m
def test_adv():
 (pk, sk) = rsa_keygen()
 # Generate a message m
 m = b"a few random words to be shuffle randomly to get some interesting ciphertext not really much sense in it but seemed fun to do instead of random bits etc bla bla".split()
 random.shuffle(m)
 m = b" " .join(m)
 # Get a key pair
 (pk, sk) = rsa_keygen()
 # Encrypt m
 c = hyb_enc(pk, m)
 # Just a test
 assert m == hyb_dec(sk, c)
 # Call the adversary, let him guess m
 m2 = adv(pk, c)
 assert isinstance(m2, bytes)
 # Check
 if m == m2:
 print("Success. The adversary broke the scheme")
 else:
 print("*** Failure ***")

test_adv()

Problem 2: Malleability of textbook RSA

The adversary get a textbook RSA encryption $c = E(pk, m)$ for some unknown message m. The adversary also knows $pk = (N, e)$. The adversary wants to compute $c' = E(pk, 2m)$. (This is a specific example of malleability.) How can the adversary efficiently compute c' from c and pk?

You may assume that $0 \leq m < N/2$.

Problem 3: Encoding messages for ElGamal (bonus problem)

The message space of ElGamal (when using the instantiation that operates modulo a prime $p > 2$ with $p \equiv 3 \pmod{4}$) is the set $\mathbb{QR}_p = \{x^2 \mod p : x = 0, \ldots, p - 1\}$.

The problem is now: if we wish to encrypt a message $m \in \{0, 1\}^\ell$ (with $\ell \leq |p| - 2$), how do we interpret m as an element of \mathbb{QR}_p?

One possibility is to use the following function $f : \{1, \ldots, \frac{p-1}{2}\} \rightarrow \mathbb{QR}_p$:

$$f(x) := \begin{cases}
 x & \text{if } x \in \mathbb{QR}_p \\
 -x \mod p & \text{if } x \notin \mathbb{QR}_p
\end{cases}$$

1 You do not actually need to use this fact, but the hint that $-1 \notin \mathbb{QR}_p$ below is only true in this case.
Once we see that \(f \) is a bijection and can be efficiently inverted, the problem is solved, because a bitstring \(m \in \{0, 1\}^\ell \) can be interpreted as a number in the range \(1, \ldots, \frac{p-1}{2} \) by simply interpreting \(m \) as a binary integer and adding 1 to it. (I.e., we encrypt \(f(m + 1) \).)

We claim that the following function is the inverse of \(f \):

\[
g(x) := \begin{cases}
 x & \text{if } x = 1, \ldots, \frac{p-1}{2} \\
 -x \mod p & \text{if } x \neq 1, \ldots, \frac{p-1}{2}
\end{cases}
\]

We thus need to show the following: the range of \(f \) is indeed \(\text{QR}_p \), and that \(g(f(x)) = x \) for all \(x \in \{1, \ldots, \frac{p-1}{2}\} \).

(a) Show that \(f(x) \in \text{QR}_p \) for all \(x \in \{1, \ldots, \frac{p-1}{2}\} \).

Hint: You can use (without proof) that \(-1 \notin \text{QR}_p\) (this only holds in \(\text{QR}_p \) for \(p \) prime with \(p \equiv 3 \mod 4 \)). And that the product of two quadratic non-residues is a quadratic residue (this only holds in \(\text{QR}_p \), but not in \(\text{QR}_n \) for \(n \) non-prime).

(b) Show that \(g(f(x)) = x \) for all \(x \in \{1, \ldots, \frac{p-1}{2}\} \).

(This then shows that \(f \) is indeed efficiently invertible. Bijectivity follows from injectivity because the domain and range of \(f \) both have the same size.)

Hint: Make a case distinction between \(x \in \text{QR}_p \) and \(x \notin \text{QR}_p \). Show that for \(x \in \{1, \ldots, \frac{p-1}{2}\} \) it holds that \(-x \mod p \notin \{1, \ldots, \frac{p-1}{2}\}\).

Problem 4: Malleability of ElGamal

Remember the auction example from the lecture: Bidder 1 produces a ciphertext \(c = E(pk, bid_1) \) where \(E \) is the ElGamal encryption algorithm (using integers mod \(p \) as the underlying group). Given \(c \), Bidder 2 can then compute \(c' \) such that \(c' \) decrypts to \(2 \cdot bid_1 \mod p \). This allows Bidder 2 to consistently bid twice as much as Bidder 1.

Now refine the attack. You may assume that \(bid_1 \) is the amount of Cents Bidder 1 is willing to pay. And you can assume that Bidder 1 will always bid a whole number of Euros. (I.e., \(bid_1 \) is a multiple of 100.)

Show how Bidder 2 can consistently overbid Bidder 1 by only 1%. What happens to your attack if Bidder 1 suddenly does not bid a whole number of Euros?

Hint: Remember that modulo \(p \), one can efficiently find inverses. For example, one can find a number \(a \) such that \(a \cdot 100 \equiv 1 \mod p \).

\(^2 \)As long as \(bid_1 < p/2 \), that is. Otherwise \(2 \cdot bid_1 \mod p \) will not be twice as much as \(bid_1 \). However, for large \(p \), \(bid_1 \geq p/2 \) is an unrealistically high bid.
Problem 5: Hybrid encryption – implementations

(a) Implement a hybrid encryption using ElGamal and AES. You are allowed to use ready-made ElGamal and AES.

In the contributed file hybrid.py (lecture webpage), you find a prepared template in Python that already provides function for ElGamal and AES encryption as well as some utility functions and testing code that you might need. I recommend to use that code. If you wish to use another language, you will have to find your own ElGamal and AES routines.

You should check that hybrid_decrypt(sk, hybrid_encrypt(pk, msg)) returns msg.

It is OK if you only allow encrypting messages whose length is a multiple of 16 bytes (blocklength of AES).

(b) [Bonus problem] The ElGamal implementation used in hybrid.py might leak whether the message msg is a quadratic residue. Using the methods developed in Problem 3, fix the functions elgamal_encrypt and elgamal_decrypt to avoid this leakage.
(You need to make sure that elgamal_decrypt(sk, elgamal_encrypt(pk, msg)) still returns msg.)

Problem 6: Security proofs (bonus problem)

Recall the definition of IND-OT-CPA (Definition 3 in the lecture notes). There, we defined security by saying that if the adversary cannot distinguish between an encryption of \(m_0\) and \(m_1\) in the sense that it will output 1 will almost the same probability in both cases.

Consider the following variant of the definition:

Definition 1 (IND-OT-CPA – variant) An encryption scheme \((KG, E, D)\) is \((\tau, \varepsilon)\)-IND-OT-CPA’ secure\(^3\) if for any \(\tau\)-time algorithm \(A\) we have that

\[
\left| \Pr[b^* = b : b \leftarrow \{0, 1\}, k \leftarrow KG(), (m_0, m_1) \leftarrow A(), c \leftarrow E(k, m_b), b^* \leftarrow A(c) \right] - \frac{1}{2} \right| \leq \varepsilon.
\]

(Here we quantify only over algorithms \(A\) that output \((m_0, m_1)\) with \(|m_0| = |m_1|\).)

That is, the message \(m_b\) is encrypted (with \(b\) random), and we want that the adversary cannot guess \(b\) with probability much different from \(\frac{1}{2}\). (Guessing with probability \(\frac{1}{2}\) is always possible since \(b\) is just a single bit.)

We wish to prove that if \((KG, E, D)\) is \((\tau, \varepsilon)\)-IND-OT-CPA’ secure, then \((KG, E, D)\) is \((\tau, 2\varepsilon)\)-IND-OT-CPA secure.

Note: The converse also holds, but we will not prove that.

\(^3\)This is not an established name!
(a) Assume an adversary A that breaks $(\tau, 2\varepsilon)$-IND-OT-CPA security. Let

$$\alpha_0 := \Pr[b^* = 1 : k \leftarrow KG(), (m_0, m_1) \leftarrow A(), c \leftarrow E(k, m_0), b^* \leftarrow A(c)]$$

and

$$\alpha_1 := \Pr[b^* = 1 : k \leftarrow KG(), (m_0, m_1) \leftarrow A(), c \leftarrow E(k, m_1), b^* \leftarrow A(c)].$$

What do we know about α_0 and α_1 (by definition of IND-OT-CPA and the fact that A breaks IND-OT-CPA)?

(b) Compute

$$\beta := |\Pr[b' = b : k \leftarrow KG(), b \overset{\$}{\leftarrow} \{0, 1\}, (m_0, m_1) \leftarrow A(), c \leftarrow E(k, m_b), b' \leftarrow A(c)] - \frac{1}{2}|.$$

(As a formula using α_0 and α_1.)

(c) Using (a) and (b), show that if A breaks $(\tau, 2\varepsilon)$-IND-OT-CPA, then A breaks (τ, ε)-IND-OT-CPA'. (Hence: IND-OT-CPA' implies IND-OT-CPA.)