Problem 1: Textbook RSA and hybrid encryption

A common variant of textbook RSA is the following: During key generation, the modulus N is chosen as usual. We chose e as $e := 3$ (instead of random). Then d is chosen with $ed \equiv 1 \pmod{\varphi(N)}$ (as usual). This is implemented by the Python functions `rsa_keygen`, `rsa_enc`, `rsa_dec` below.

We use this in a “hybrid encryption”, which first picks an AES key k, encrypts it with RSA, and then encrypts the actual message with AES using the key k. (Functions `hyb_enc`, `hyb_dec`.)

Your task is to write an adversary that, given the public key pk, and the hybrid encryption c of some message m, finds m. That is, fill in the function body of the function `adv` below so that the function `test_adv` prints `Success`. The adversary broke the scheme.

Hint: Note that $k < 3\sqrt{N}$ here. This makes it much simpler to find k given $k^3 \pmod{N}$!

(You find the following file on the lecture webpage, too.)

```python
#!/usr/bin/python3

# Use "pip install sympy" (possibly with sudo) to install sympy
# And "Crypto" might need "pip install pycrypto" if it's not installed

import sympy, math, Crypto, random

prime_len = 1024

def egcd(a, b):
    if a == 0:
        return (b, 0, 1)
    else:
        g, y, x = egcd(b % a, a)
        return (g, x - (b // a) * y, y)

def modinv(a, m):
    g, x, y = egcd(a, m)
    if g != 1:
        raise Exception('modular inverse does not exist')
    else:
```

```
def rsa_keygen():
    while True:
        try:
            p = sympy.ntheory.generate.randprime(2**prime_len, 2**(prime_len+1))
            q = sympy.ntheory.generate.randprime(2**prime_len, 2**(prime_len+1))
            e = 3
            N = p*q
            phiN = (p-1)*(q-1)
            pk=(N,e)
            sk=(N,modinv(e,phiN))
            return (pk,sk)
        except Exception as e:
            pass

# Rough ad-hoc algorithm, not optimized
def exp_mod(a,e,N):
    res = 1
    b = a
    i = 0
    while e>=2**i: # Invariant: b=a**(2**i)
        if e & 2**i != 0:
            e -= 2**i
            res = (res*b) % N
            b=(b*b) % N
        i += 1
    assert e==0
    return res

# Just a test
assert exp_mod(23123, 323, 657238293) == ((23123**323) % 657238293)

def rsa_enc(pk,m):
    (N,e) = pk
    return exp_mod(m,e,N)

def rsa_dec(sk,c):
    (N,d) = sk
    return exp_mod(c,d,N)

def int_to_bytes(i,len): # Not optimized
    res = []
for j in range(len):
    res.append(i%256)
    i = i>>8
return bytes(res)

def aes_cbc_enc(k,m):
    from Crypto.Cipher import AES
    from Crypto import Random
    assert len(m)%AES.block_size == 0
    k = int_to_bytes(k,AES.block_size)
    iv = Random.new().read(AES.block_size)
    cipher = AES.new(k, AES.MODE_CBC, iv)
    return iv + cipher.encrypt(m)

def aes_cbc_dec(k,m):
    from Crypto.Cipher import AES
    from Crypto import Random
    k = int_to_bytes(k,AES.block_size)
    iv = m[:AES.block_size]
    cipher = AES.new(k, AES.MODE_CBC, iv)
    return cipher.decrypt(m[AES.block_size:]

# Just a test
assert aes_cbc_dec(2123414234,aes_cbc_enc(2123414234,b'hello there test')) == b'hello there test'

def hyb_enc(pk,m):
    assert isinstance(m,bytes)
    k = random.getrandbits(256)
    aes_k_m = aes_cbc_enc(k,m)
    assert m == aes_cbc_dec(k,aes_k_m)
    rsa_pk_k = rsa_enc(pk,k)
    return (rsa_pk_k,aes_k_m)

def hyb_dec(sk,c):
    (c1,c2) = c
    k = rsa_dec(sk,c1)
    m = aes_cbc_dec(k,c2)
    return m

def adv(pk,c):
    m = b"put the right message here"
    return m
Problem 2: Malleability of textbook RSA

The adversary get a textbook RSA encryption \( c = E(pk, m) \) for some unknown message \( m \).
The adversary also knows \( pk = (N, e) \). The adversary wants to compute \( c' = E(pk, 2m) \).
(This is a specific example of malleability.) How can the adversary efficiently compute \( c' \) from \( c \) and \( pk \)?

You may assume that \( 0 \leq m < N/2 \).

Problem 3: Encoding messages for ElGamal (bonus problem)

The message space of ElGamal (when using the instantiation that operates modulo a prime \( p > 2 \) with \( p \equiv 3 \mod 4 \)) is the set \( \text{QR}_p = \{x^2 \mod p : x = 0, \ldots, p-1\} \).

The problem is now: if we wish to encrypt a message \( m \in \{0, 1\}^\ell \) (with \( \ell \leq |p| - 2 \)), how do we interpret \( m \) as an element of \( \text{QR}_p \)?

One possibility is to use the following function \( f : \{1, \ldots, p-1\} \rightarrow \text{QR}_p \):

\[
f(x) := \begin{cases} 
  x & \text{if } x \in \text{QR}_p \\
  -x \mod p & \text{if } x \notin \text{QR}_p
\end{cases}
\]

\footnote{You do not actually need to use this fact, but the hint that \(-1 \notin \text{QR}_p\) below is only true in this case.}
Once we see that $f$ is a bijection and can be efficiently inverted, the problem is solved, because a bitstring $m \in \{0,1\}^\ell$ can be interpreted as a number in the range $1, \ldots, \frac{p-1}{2}$ by simply interpreting $m$ as a binary integer and adding 1 to it. (I.e., we encrypt $f(m+1)$.)

We claim that the following function is the inverse of $f$:

$$g(x) := \begin{cases} x & \text{if } x = 1, \ldots, \frac{p-1}{2} \\ -x \mod p & \text{if } x \neq 1, \ldots, \frac{p-1}{2} \end{cases}$$

We thus need to show the following: the range of $f$ is indeed $\text{QR}_p$, and that $g(f(x)) = x$ for all $x \in \{1, \ldots, \frac{p-1}{2}\}$.

(a) Show that $f(x) \in \text{QR}_p$ for all $x \in \{1, \ldots, \frac{p-1}{2}\}$.

**Hint:** You can use (without proof) that $-1 \notin \text{QR}_p$ (this only holds in $\text{QR}_p$ for $p$ prime with $p \equiv 3 \mod 4$). And that the product of two quadratic non-residues is a quadratic residue (this only holds in $\text{QR}_p$, but not in $\text{QR}_n$ for $n$ non-prime).

(b) Show that $g(f(x)) = x$ for all $x \in \{1, \ldots, \frac{p-1}{2}\}$.

(This then shows that $f$ is indeed injective and efficiently invertible. Bijectivity follows from injectivity because the domain and range of $f$ both have the same size.)

**Hint:** Make a case distinction between $x \in \text{QR}_p$ and $x \notin \text{QR}_p$. Show that for $x \in \{1, \ldots, \frac{p-1}{2}\}$ it holds that $-x \mod p \notin \{1, \ldots, \frac{p-1}{2}\}$.

**Problem 4: Malleability of ElGamal**

Remember the auction example from the lecture: Bidder 1 produces a ciphertext $c = E(pk, bid_1)$ where $E$ is the ElGamal encryption algorithm (using integers mod $p$ as the underlying group). Given $c$, Bidder 2 can then compute $c'$ such that $c'$ decrypts to $2 \cdot bid_1 \mod p$. This allows Bidder 2 to consistently bid twice as much as Bidder 1.

Now refine the attack. You may assume that $bid_1$ is the amount of Cents Bidder 1 is willing to pay. And you can assume that Bidder 1 will always bid a whole number of Euros. (i.e., $bid_1$ is a multiple of 100.)

Show how Bidder 2 can consistently overbid Bidder 1 by only 1%. What happens to your attack if Bidder 1 suddenly does not bid a whole number of Euros?

**Hint:** Remember that modulo $p$, one can efficiently find inverses. For example, one can find a number $a$ such that $a \cdot 100 \equiv 1 \mod p$.

\footnote{As long as $bid_1 < p/2$, that is. Otherwise $2 \cdot bid_1 \mod p$ will not be twice as much as $bid_1$. However, for large $p$, $bid_1 \geq p/2$ is an unrealistically high bid.}
Problem 5: Hybrid encryption – implementations

(a) Implement a hybrid encryption using ElGamal and AES. You are allowed to use ready-made ElGamal and AES.

In the contributed file hybrid.py (lecture webpage), you find a prepared template in Python that already provides function for ElGamal and AES encryption as well as some utility functions and testing code that you might need. I recommend to use that code. If you wish to use another language, you will have to find your own ElGamal and AES routines.

You should check that \( \text{hybrid\_decrypt}(sk, \text{hybrid\_encrypt}(pk, msg)) \) returns \( msg \).

It is OK if you only allow encrypting messages whose length is a multiple of 16 bytes (blocklength of AES).

(b) [Bonus problem] The ElGamal implementation used in hybrid.py might leak whether the message \( msg \) is a quadratic residue. Using the methods developed in Problem 3, fix the functions \( \text{elgamal\_encrypt} \) and \( \text{elgamal\_decrypt} \) to avoid this leakage.

(You need to make sure that \( \text{elgamal\_decrypt}(sk, \text{elgamal\_encrypt}(pk, msg)) \) still returns \( msg \).)

Problem 6: Security proofs (bonus problem)

Recall the definition of IND-OT-CPA (Definition 3 in the lecture notes). There, we defined security by saying that if the adversary cannot distinguish between an encryption of \( m_0 \) and \( m_1 \) in the sense that it will output 1 will almost the same probability in both cases.

Consider the following variant of the definition:

**Definition 1 (IND-OT-CPA – variant)** An encryption scheme \((KG, E, D)\) is \((\tau, \varepsilon)\)-IND-OT-CPA' secure\(^3\) if for any \(\tau\)-time algorithm \(A\) we have that

\[
|\Pr[b^* = b : b \leftarrow \{0, 1\}, k \leftarrow KG(), (m_0, m_1) \leftarrow A(), c \leftarrow E(k, m_b), b^* \leftarrow A(c)| - \frac{1}{2}| \leq \varepsilon.
\]

(Here we quantify only over algorithms \(A\) that output \((m_0, m_1)\) with \(|m_0| = |m_1|\).)

That is, the message \(m_b\) is encrypted (with \(b\) random), and we want that the adversary cannot guess \(b\) with probability much different from \(\frac{1}{2}\). (Guessing with probability \(\frac{1}{2}\) is always possible since \(b\) is just a single bit.)

We wish to prove that if \((KG, E, D)\) is \((\tau, \varepsilon)\)-IND-OT-CPA' secure, then \((KG, E, D)\) is \((\tau, 2\varepsilon)\)-IND-OT-CPA secure.

**Note:** The converse also holds, but we will not prove that.

\(^3\)This is not an established name!
(a) Assume an adversary $A$ that breaks $(\tau, 2\varepsilon)$-IND-OT-CPA security. Let

$$\alpha_0 := \Pr[b^* = 1 : k \leftarrow KG(), (m_0, m_1) \leftarrow A(), c \leftarrow E(k, m_0), b^* \leftarrow A(c)]$$

and

$$\alpha_1 := \Pr[b^* = 1 : k \leftarrow KG(), (m_0, m_1) \leftarrow A(), c \leftarrow E(k, m_1), b^* \leftarrow A(c)]$$

What do we know about $\alpha_0$ and $\alpha_1$ (by definition of IND-OT-CPA and the fact that $A$ breaks IND-OT-CPA)?

(b) Compute

$$\beta := \left| \Pr[b' = b : k \leftarrow KG(), b \leftarrow \{0, 1\}, (m_0, m_1) \leftarrow A(), c \leftarrow E(k, m_b), b' \leftarrow A(c)] - \frac{1}{2} \right|.$$  

(As a formula using $\alpha_0$ and $\alpha_1$.)

(c) Using (a) and (b), show that if $A$ breaks $(\tau, 2\varepsilon)$-IND-OT-CPA, then $A$ breaks $(\tau, \varepsilon)$-IND-OT-CPA'. (Hence: IND-OT-CPA' implies IND-OT-CPA.)