Cryptology I (spring 2019) Dominique Unruh

Exercise Sheet 5

Out: 2019-05-15 Due: 2019-05-29

Problem 1: One-way functions

Which of the following are one-way functions? For each function that is a one-way
function, explain why (no formal proof required). For each function that is not a one-way
function, write an attack in Python. (Code for all the functions, including test code is
provided in owf.py. You only need to fill in the functions advi for attacking function f;.)

Hint: Out of the four functions, one is a OWF, the other three are not.

Note: Formally, of course, the question would have to be “is the function a (7,e)-OWF?”
and 7 and € would have to be specified. I am omitting specific 7 and ¢, instead, you are
to interpret “is an OWEF” as “there is no attack in reasonable time and with resonable
success probability”.

Note: You may assume that the RSA assumption holds. And that E4gg is a PRF. (For
reasonable T, e, again.)

Note: Remember that to break a one-way function, it is sufficient to find some preimage,
not necessarily the “true” one that was fed into the one-way function.
(a) fi(z) :=0 for all x € {0,1}".

(b) f(N,e,z):= (N,e,z¢ mod N) where the domain of f is the set of all (N, e, z) where
N is an RSA modulus, e is relatively prime to N, and z € {0,..., N —1}.

(¢) f(N,e,x) := z¢ mod N where the domain of f is the set of all (N, e, z) where N is
an RSA modulus, e is relatively prime to N, and = € {0,..., N — 1}.

(d) f(k,z):= Eags(k,x).

Problem 2: Tree-based signatures

This problem refers to the tree-based construction of signature schemes from one-time
signatures from [Construction 4] in the lecture notes. You may assume that Lamport’s
signature scheme (Construction 2|in the lecture notes) is used as the underlying one-time
signature scheme. (Where all messages are first hashed with a hash function H before
signing with Lamport’s scheme in order to fit in the message space.)

(a)

As a warmup, let’s attack Lamport’s scheme. Assume Alice is sending random
messages m, together with signatures o := Sign gm0 (5K, m). Alice uses, though
she should know better, the same sk for all messages m. (I am not specifying how
many messages Alice sends and signs, you can assume that there are enough of them
for your attack.)

The adversary gets all messages m and all corresponding signatures o.

Describe how to efficiently compute sk from the received m, o.

Note: Be explicit: describe all the actions and computations the adversary has to
perform. (E.g., give the adversary in pseudocode.) It is not sufficient to say something
like: “since two signatures are produced using the same key with a one-time signature
scheme, the adversary can break the scheme”. Remember that the underlying scheme
is Lamport’s one-time signature scheme.

Assume someone has implemented the signature scheme incorrectly as follows: Instead
of using randomness from the pseudorandom function F for the key-generation
algorithm, it runs the key-generation normally (i.e., as probabilistic algorithms, with
fresh randomness each time it is invoked).

Explain how to break the signature scheme. More precisely, show how to sign an
arbitrary message m by performing only signature queries for messages m’ # m.

Note: Be explicit: describe all the actions and computations the adversary has to
perform. (E.g., give the adversary in pseudocode.) It is not sufficient to say something
like: “since two signatures are produced using the same key with a one-time signature
scheme, the adversary can break the scheme”. Remember that the underlying scheme
is Lamport’s one-time signature scheme.

Bonus problem: Lamport’s signature scheme has public keys consisting of 2n n-bit
blocks (assuming that the one-way function f has domain and range {0,1}"). But it
signs only messages consisting of a single n-bit block. In the tree-based construction,
we need to sign two Lamport public keys, i.e., 4n n-bit blocks. Normally we solve this
by converting Lamport’s scheme into a one-time signature scheme for long messages
by hashing the messages to be signed.

Here we explore a different possibility. Instead of hashing the 4n x
n bits, we XOR the blocks together. That is, from Lamport’s scheme
(KG Lamports Si9M Lamport> VeTifY Lamport) We construct a one-time signature scheme
(KG1, Signy, Verify,) for 4n x n-bit messages as follows:

KG1 = KGramport- Signy(sk,mall...[[man) = Sig9n Lamport (8K, @?21 m;) for
mi,...,myy € {0,1}". Verify,(pk,m1...myp,0) := VerifyLamport(pk, @?21 mi, o).

Now we can construct the tree-based signature scheme (KGree, Si0M tyee, VErifyree)

from (KG1, Sign,, Verify,) without needing a hash function (as in [Construction 4|in

the lecture notes).

Your task: Break the resulting (KG iree, S19% irees VETify iree)-

Note: It is not sufficient to just show that (KG1, Sign,, Verify,) is insecure. You

have to break (KG tree, Sign ipees Verify,re.). All the other comments from the note of
(]ED also apply.

