Problem 1: One-time-pad

(a) Write a program that achieves the following: It takes as input two ciphertexts c_1 and c_2 of the same length. Both are expected to be the encryption of a single word m_1, m_2 using the one-time-pad. To produce the ciphertexts, the same key has been used. The program then finds m_1 and m_2.

Consider the following ciphertexts: $c_1 = \text{4A5C45492449552A}$, $c_2 = \text{5A47534D35525F20}$ (eight bytes each, presented in hex). Figure out the plaintexts using your program.

Note: On many Linux systems, you find a wordlist in /usr/share/dict/words. Or use the file wordlist.txt from the webpage. Please submit a printout of your source code and the plaintexts.

Hint: If you use python (version 3.x), you may find the following code snippets useful:

```python
def xor_two_words(x,y):
    assert len(x)==len(y)
    assert isinstance(x,bytes)
    assert isinstance(y,bytes)
    return bytes([a^b for a,b in zip(x,y)])
```

```python
bytes.fromhex("5AC643BE8504E35E") decodes a hex string. And the following XORs two string bitwise:
```
(b) [Bonus problem.] Write a program that does the same as in (a), except that m_1, m_2 are now English sentences.

This is much more difficult, but if you enjoy the challenge, you can do it.

Problem 2: Perfect secrecy

Show that there is no encryption scheme that has perfect secrecy and allows us to reuse the key. More precisely, show that there is no encryption scheme E that satisfies the following definition (and that can be decrypted):

Definition 1 (Perfect secrecy with key reuse) Let K be the set of keys, let M be the set of messages, and let E be the encryption algorithm (possibly randomized) of an encryption scheme. We say the encryption scheme has perfect secrecy with key reuse iff for all n, and all $m_0^{(1)}, \ldots, m_n^{(n)}, m_1^{(1)}, \ldots, m_1^{(n)} \in M$ and for all c_1, \ldots, c_n, we have that

$$\Pr[(c_1, \ldots, c_n) = (c_1', \ldots, c_n') : k \xleftarrow{} K, c_1' \leftarrow E(k, m_0^{(1)}), \ldots, c_n' \leftarrow E(k, m_n^{(n)})] = \Pr[(c_1, \ldots, c_n) = (c_1', \ldots, c_n') : k \xleftarrow{} K, c_1' \leftarrow E(k, m_1^{(1)}), \ldots, c_n' \leftarrow E(k, m_1^{(n)})]$$

Hint: If you have an encryption scheme E with perfect secrecy with key reuse, first construct from it a scheme E' with perfect secrecy that has messages longer than keys. (Show that it indeed has perfect secrecy.) Then use **Theorem 1** in the lecture notes.