Problem 1: Security definitions

Your task is to write a security definition in Python (or another language, but we provide a template in Python). The goal of this is to give you a better understanding what security definitions mean, besides just being formulas. We illustrate this by writing the security definition of PRGs in Python:

```
#!/usr/bin/python3

# For simplicity, we fix domain and range of PRGs here:
# The domain is the set of 32-bit integers
# The random is the set of ten-element lists of 32-bit integers
# (equivalent to 320-bit integers)

import random

# A very bad pseudo-random generator
# Seed is supposed to be a 32-bit integer
# Output is a ten element list of 32-bit integers
def G(seed):
    return [4267243**i*seed % 2**32 for i in range(1,11)]

# The game: it gets a prg and an adversary as arguments
def prg_game(G,adv):
    b = random.randint(0,1) # Random bit
    seed = random.randint(0,2**32-1) # Random seed
    rand = [random.randint(0,2**32-1) for i in range(10)] # Truly random output
    if b==0: badv = adv(G(seed))
    else: badv = adv(rand)
    return b==badv

def adv(rand):
    if rand[1]==4267243*rand[0] % 2**32: return 0
    else: return 1

def test_prg(G,adv):
```

num_true = 0
num_tries = 100000
for i in range(num_tries):
 if prg_game(G,adv): num_true += 1
ratio = float(num_true)/num_tries
print(ratio)

An output near 0.5 means no attack
An output near 0.0 or 1.0 means a successful attack
test_prg(G,adv)

Here \(G \) is an implementation of a pseudo-random generator (a rather bad one). And \(\text{prg_game} \) is a function that implements the game from the security definition of PRGs. That is, it takes a PRG \(G \), and an adversary \(\text{adv} \), and calls \(\text{adv} \) either with randomness or the output of \(G \). If the adversary guesses correctly which of the two was the case, \(\text{prg_game} \) returns \text{True}, else \text{False}.

The function \(\text{test_prg} \) tries out whether a given adversary is successful or not by counting how often he guesses right. (Of course, this does not replace a proof: a statistic does not give certainty, and also we cannot know whether other adversaries are successful. But it illustrates the use of the security definition.)

We have also written an example adversary \(\text{adv} \) that breaks the PRG \(G \). For simplicity, let both the message and the key space consist of 32-bit integers. But note that you are not supposed to use brute force attacks.

Your task:
(a) Write the security definition for IND-OT-CPA as a Python program. (Recall, in IND-OT-CPA, the adversary is called twice, so you will need two functions \(\text{adv1} \) and \(\text{adv2} \). Also pay attention to the following: the adversary should not be allowed to output messages that are not in the message space.)
(b) Write an adversary that breaks the encryption scheme \(\text{enc} \) defined in the source code below. (This adversary should have a success probability, as measured by \(\text{test_indotcpa} \) of at least 0.95.)

Here is a template for your solution. You need to fill in code where there are ???.

```python
#!/usr/bin/python

# For simplicity, the message space and the key space consists of 32-bit integers
# And the ciphertext space consists of all integers (possibly longer)

import random

# A bad encryption scheme
def enc(key,msg):
    return key*msg
```

2
The IND-OT-CPA game

def indotcpa_game(enc, adv1, adv2):
 ???

The adversary breaking the above encryption scheme
(Consisting of two functions, since the adversary is invoked twice by the game)
def adv1():
 ???
def adv2(c):
 ???

def test_indotcpa(enc, adv1, adv2):
 num_true = 0
 num_tries = 100000
 for i in range(num_tries):
 if indotcpa_game(enc, adv1, adv2): num_true += 1
 ratio = num_true/num_tries
 print(ratio)

An output near 0.5 means no attack
An output neat 0.0 or 1.0 means a successful attack
test_indotcpa(enc, adv1, adv2)