
Cryptology I (spring 2020) Dominique Unruh

Exercise Sheet 3

Out: 2020-03-11 Due: 2020-03-22

Problem 1: “Inverse” CBC

Consider the following mode of operation (which I call “inverse CBC”):
To encrypt a message m consisting of blocks m1, . . . ,mn with key k, pick a random

initialization vector iv and then compute c1 := E0(k,m1)⊕ iv and ci := E0(k,mi)⊕mi−1
for i = 2, . . . , n. Here E0 is the block cipher. And E(k,m) := iv‖c1‖ . . . ‖cn.

The adversary has intercepted a ciphertext c = E(k,m). He happens to know the last
block mn of m (e.g., because that one is prescribed by the protocol).

(a) Explain how the adversary can completely decrypt m. He can make chosen plaintext
queries (i.e., he can ask for encryptions of arbitrary message m′). He cannot make
decryption queries.

Hint: First think how you can, e.g., find out E0(k,mn) by performing an encryption
query E(k,mn).

(b) Suggest how to fix the mode of operation so that it becomes secure at least against
this attack (and simple modifications thereof). You do not need to prove security.

Problem 2: Breaking ECB

In the lecture we have seen that encrypting a file with ECB mode is not very secure. For
example, if an uncompressed image file is encrypted, the result may still reveal much of
the picture to the naked eye.

In this exercise, we consider the task of distinguishing the encryption of two given
messages m0,m1 automatically. That is, assume that two messages m0,m1 (English texts)
of the same length are given and known to the adversary. Furthermore, the adversary
learns c, which is the ECB encryption of m0 or m1 (using a random and unknown key k).
The adversary is now supposed to guess which message was encrypted. (I.e., we have a
known plaintext attack, not a chosen plaintext attack.)

(a) Describe an algorithm that finds out (given m0, m1, c) whether m0 or m1 was
encrypted. It should work on “typical” text files. (That is, it should not require, e.g.,
one of the text files to contain only spaces or similar.)

Example of “typical” text files are ecb-distinguish-1.txt and
ecb-distinguish-2.txt from the lecture webpage.

(b) (Bonus points) Implement the algorithm. That is, fill in the missing code for the
function adv in the code below (also available on the lecture webpage):

#!/usr/bin/python3

"Crypto" might need "pip install pycrypto" if it’s not installed

import Crypto, random
from Crypto.Cipher import AES

def int_to_bytes(i,len): # Not optimized
res = []
for j in range(len):

res.append(i%256)
i = i>>8

return bytes(res)

def aes_ecb_enc(k,m):
from Crypto import Random
assert isinstance(m,bytes)
assert len(m)%AES.block_size == 0, len(m)%AES.block_size
k = int_to_bytes(k,AES.block_size)
cipher = AES.new(k, AES.MODE_ECB)
return cipher.encrypt(m)

def aes_ecb_dec(k,m):
from Crypto import Random
assert isinstance(m,bytes)
k = int_to_bytes(k,AES.block_size)
cipher = AES.new(k, AES.MODE_ECB)
return cipher.decrypt(m)

Just a test
assert aes_ecb_dec(2123414234,aes_ecb_enc(2123414234,b’hello there test’)) == b’hello there test’

The game: it gets a prg and an adversary as arguments,
as well as the messages to be distinguished
def guessing_game(adv,m0,m1):

b = random.randint(0,1) # Random bit
k = random.getrandbits(256) # Random AES key
seed = random.randint(0,2**32-1) # Random seed
rand = [random.randint(0,2**32-1) for i in range(10)] # Truly random output

2

msg = (m0,m1)[b]
ciph = aes_ecb_enc(k,msg)
badv = adv(ciph)
return b==badv

def adv(ciph):
blocks contains the ciphertext as a list of blocks
blocks = [ciph[i*AES.block_size:(i+1)*AES.block_size] for i in range(len(ciph)//AES.block_size)]

???
return ??? # return 0 or 1

def test_adv(adv):
num_true = 0
num_tries = 3000
m0 = open("ecb-distinguish-1.txt","rb").read()
m1 = open("ecb-distinguish-2.txt","rb").read()
for i in range(num_tries):

#if i%100==0: print(str(i)+"...")
if guessing_game(adv,m0,m1): num_true += 1

ratio = float(num_true)/num_tries
print(ratio)

An output near 0.5 means no attack
An output neat 0.0 or 1.0 means a successful attack
test_adv(adv)

3

