Problem 1: Malleability of ElGamal

Remember the auction example from the lecture: Bidder 1 produces a ciphertext \(c = E(pk, bid_1) \) where \(E \) is the ElGamal encryption algorithm (using integers mod \(p \) as the underlying group). Given \(c \), Bidder 2 can then compute \(c' \) such that \(c' \) decrypts to \(2 \cdot bid_1 \mod p \). This allows Bidder 2 to consistently bid twice as much as Bidder 1.

Now refine the attack. You may assume that \(bid_1 \) is the amount of Cents Bidder 1 is willing to pay. And you can assume that Bidder 1 will always bid a whole number of Euros. (I.e., \(bid_1 \) is a multiple of 100.)

Show how Bidder 2 can consistently overbid Bidder 1 by only 1%. What happens to your attack if Bidder 1 suddenly does not bid a whole number of Euros?

Hint: Remember that modulo \(p \), one can efficiently find inverses. For example, one can find a number \(a \) such that \(a \cdot 100 \equiv 1 \mod p \).

Problem 2: Encoding messages for ElGamal (bonus problem)

The message space of ElGamal (when using the instantiation that operates modulo a prime \(p > 2 \) with \(p \equiv 3 \mod 4 \) and if we want to avoid the insecurity discussed in the practice) is the set \(\text{QR}_p = \{x^2 \mod p : x = 0, \ldots, p-1\} \).

The problem is now: if we wish to encrypt a message \(m \in \{0, 1\}^\ell \) (with \(\ell \leq |p| - 2 \)), how do we interpret \(m \) as an element of \(\text{QR}_p \)?

One possibility is to use the following function \(f : \{1, \ldots, \frac{p-1}{2}\} \rightarrow \text{QR}_p \):

\[
 f(x) := \begin{cases}
 x & \text{if } x \in \text{QR}_p \\
 -x \mod p & \text{if } x \notin \text{QR}_p
\end{cases}
\]

Once we see that \(f \) is a bijection and can be efficiently inverted, the problem is solved, because a bitstring \(m \in \{0, 1\}^\ell \) can be interpreted as a number in the range \(1, \ldots, \frac{p-1}{2} \) by simply interpreting \(m \) as a binary integer and adding 1 to it. (I.e., we encrypt \(f(m+1) \).)

We claim that the following function is the inverse of \(f \):

\[
 g(x) := \begin{cases}
 x & \text{if } x = 1, \ldots, \frac{p-1}{2} \\
 -x \mod p & \text{if } x \neq 1, \ldots, \frac{p-1}{2}
\end{cases}
\]

1 As long as \(bid_1 < p/2 \), that is. Otherwise \(2 \cdot bid_1 \mod p \) will not be twice as much as \(bid_1 \). However, for large \(p \), \(bid_1 \geq p/2 \) is an unrealistically high bid.

2 You do not actually need to use this fact, but the hint that \(-1 \notin \text{QR}_p \) below is only true in this case.
We thus need to show the following: the range of f is indeed QR_p, and that $g(f(x)) = x$ for all $x \in \{1, \ldots, \frac{p-1}{2}\}$.

(a) Show that $f(x) \in \operatorname{QR}_p$ for all $x \in \{1, \ldots, \frac{p-1}{2}\}$.

Hint: You can use (without proof) that $-1 \not\in \operatorname{QR}_p$ (this only holds in QR_p for p prime with $p \equiv 3 \text{ mod } 4$). And that the product of two quadratic non-residues is a quadratic residue (this only holds in QR_p, but not in QR_n for n non-prime).

(b) Show that $g(f(x)) = x$ for all $x \in \{1, \ldots, \frac{p-1}{2}\}$.

(This then shows that f is injective and efficiently invertible. Bijectivity follows from injectivity because the domain and range of f both have the same size.)

Hint: Make a case distinction between $x \in \operatorname{QR}_p$ and $x \not\in \operatorname{QR}_p$. Show that for $x \in \{1, \ldots, \frac{p-1}{2}\}$ it holds that $-x \mod p \not\in \{1, \ldots, \frac{p-1}{2}\}$.

Problem 3: Hybrid encryption – implementations

(a) Implement a hybrid encryption using ElGamal and AES. You are allowed to use ready-made ElGamal and AES.

In the contributed file `hybrid.py` (lecture webpage), you find a prepared template in Python that already provides function for ElGamal and AES encryption as well as some utility functions and testing code that you might need. I recommend to use that code. If you wish to use another language, you will have to find your own ElGamal and AES routines.

You should check that $\operatorname{hybrid_decrypt}(\operatorname{sk}, \operatorname{hybrid_encrypt}(\operatorname{pk}, \operatorname{msg}))$ returns msg.

It is OK if you only allow encrypting messages whose length is a multiple of 16 bytes (blocklength of AES).

(b) **[Bonus problem]** The ElGamal implementation used in `hybrid.py` might leak whether the message msg is a quadratic residue. Using the methods developed in [Problem 2](#) fix the functions $\operatorname{elgamal_encrypt}$ and $\operatorname{elgamal_decrypt}$ to avoid this leakage. (You need to make sure that $\operatorname{elgamal_decrypt}(\operatorname{sk}, \operatorname{elgamal_encrypt}(\operatorname{pk}, \operatorname{msg}))$ still returns msg.)