
Cryptology I (spring 2020) Dominique Unruh

Exercise Sheet 5

Out: 2020-03-31 Due: 2020-04-08

Problem 1: Malleability of ElGamal

Remember the auction example from the lecture: Bidder 1 produces a ciphertext c =
E(pk , bid1) where E is the ElGamal encryption algorithm (using integers mod p as the
underlying group). Given c, Bidder 2 can then compute c′ such that c′ decrypts to
2 · bid1 mod p. This allows Bidder 2 to consistently bid twice as much as Bidder 1.1

Now refine the attack. You may assume that bid1 is the amount of Cents Bidder 1
is willing to pay. And you can assume that Bidder 1 will always bid a whole number of
Euros. (I.e., bid1 is a multiple of 100.)

Show how Bidder 2 can consistently overbid Bidder 1 by only 1%. What happens to
your attack if Bidder 1 suddenly does not bid a whole number of Euros?

Hint: Remember that modulo p, one can efficiently find inverses. For example, one can
find a number a such that a · 100 ≡ 1 mod p.

Problem 2: Encoding messages for ElGamal (bonus problem)

The message space of ElGamal (when using the instantation that operates modulo a
prime p > 2 with p ≡ 3 mod 4 2, and if we want to avoid the insecurity discussed in the
practice) is the set QRp = {x2 mod p : x = 0, . . . , p− 1}.

The problem is now: if we wish to encrypt a message m ∈ {0, 1}` (with ` ≤ |p| − 2),
how do we interpret m as an element of QRp?

One possibility is to use the following function f : {1, . . . , p−12 } → QRp:

f(x) :=

{
x if x ∈ QRp

−x mod p if x /∈ QRp

Once we see that f is a bijection and can be efficiently inverted, the problem is solved,
because a bitstring m ∈ {0, 1}` can be interpreted as a number in the range 1, . . . , p−12 by
simply interpreting m as a binary integer and adding 1 to it. (I.e., we encrypt f(m+ 1).)

We claim that the following function is the inverse of f :

g(x) :=

{
x if x = 1, . . . , p−12
−x mod p if x 6= 1, . . . , p−12

1As long as bid1 < p/2, that is. Otherwise 2 · bid1 mod p will not be twice as much as bid1. However,
for large p, bid1 ≥ p/2 is an unrealistically high bid.

2You do not actually need to use this fact, but the hint that −1 /∈ QRp below is only true in this case.

We thus need to show the following: the range of f is indeed QRp, and that g(f(x)) = x

for all x ∈ {1, . . . , p−12 }.

(a) Show that f(x) ∈ QRp for all x ∈ {1, . . . , p−12 }.

Hint: You can use (without proof) that −1 /∈ QRp (this only holds in QRp for p
prime with p ≡ 3 mod 4). And that the product of two quadratic non-residues is a
quadratic residue (this only holds in QRp, but not in QRn for n non-prime).

(b) Show that g(f(x)) = x for all x ∈ {1, . . . , p−12 }.
(This then shows that f is injective and efficiently invertible. Bijectivity follows from
injectivity because the domain and range of f both have the same size.)

Hint: Make a case distinction between x ∈ QRp and x /∈ QRp. Show that for
x ∈ {1, . . . , p−12 } it holds that −x mod p /∈ {1, . . . , p−12 }.

Problem 3: Hybrid encryption – implementations

(a) Implement a hybrid encryption using ElGamal and AES. You are allowed to use
ready-made ElGamal and AES.

In the contributed file hybrid.py (lecture webpage), you find a prepared template in
Python that already provides function for ElGamal and AES encryption as well as
some utility functions and testing code that you might need. I recommend to use that
code. If you wish to use another language, you will have to find your own ElGamal
and AES routines.

You should check that hybrid_decrypt(sk,hybrid_encrypt(pk,msg)) returns msg.

It is OK if you only allow encrypting messages whose length is a multiple of 16 bytes
(blocklength of AES).

(b) [Bonus problem] The ElGamal implementation used in hybrid.py might leak
whether the message msg is a quadratic residue. Using the methods developed in Prob-
lem 2, fix the functions elgamal_encrypt and elgamal_decrypt to avoid this leakage.
(You need to make sure that elgamal_decrypt(sk,elgamal_encrypt(pk,msg)) still
returns msg.)

2

