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Problem 1: ElGamal FDH

Bob studied the RSA-FDH construction. He notices that RSA-FDH essentially does the
following: To sign a message m, it decrypts H(m) using textbook RSA, and to check a
signature σ, it encrypts σ and compares the result with H(m).

This lead him to the following idea: Instead of textbook RSA, he uses ElGamal in the
construction of FDH, because ElGamal is more secure (it is IND-CPA secure, after all).

Why is the resulting scheme “ElGamal-FDH” bad?

Problem 2: Random oracle model

Write down the definition of IND-CPA security in the random oracle model (for symmetric
encryption schemes).

Problem 3: Security proof in the ROM [Bonus problem]

This is a bonus problem.

Fix a hash function H : {0, 1}∗ → {0, 1}n. We define the following block cipher with
message and key space {0, 1}n:

• Encryption E: To encrypt m ∈ {0, 1}n under key k, choose a random r ∈ {0, 1}n
and return the ciphertext c := (r,m⊕H(k‖r)).

• Decryption D: To decrypt c = (r, c′) with key k, compute and return m :=
H(k‖r)⊕ c′.

Below is a proof that this encryption scheme is (τ, qE , qH , ε)-IND-CPA1 secure in the
random oracle model. Fill in the gaps. (The length of the gaps is unrelated to the length
of the text to be inserted.)

Proof. In the first game, we just restate the game from the IND-CPA security definition
(in the random oracle model).

Game 1. 1 �
To show that the encryption scheme is (τ, qE , qH , ε)-IND-CPA secure, we need to

show that
|Pr[b = b′ : Game 1]− 1

2 | ≤ ε (1)
1qE is the number of encryption oracle queries, and qH the number of random oracle H queries

performed by A.



As a first step, we replace the random oracle.

Game 2. Like Game 1, except that we define the random oracle H differently: 2 �
We have Pr[b = b′ : Game 1] = Pr[b = b′ : Game 2].
One can see that the adversary cannot guess the key k (where k is the key used for

encryption in Game 2), more precisely, the following happens with probability ≤ qH2n:
“The adversary invokes H(x) with x = k‖r′ for some r′.” (We omit the proof of this fact.)

Let r0 denote the value r that is chosen during the execution of c ← EH(k,mb)
in Game 2. Consider the following event: “Besides the query H(k‖r0) performed by
c← EH(k,mb), there is another query H(x) with x = k‖r0 (performed by the adversary
or by the oracle EH(k, ·).” This event occurs with probability qH2−n + qE2

−n. Namely,
the adversary make such H(x) queries with probability ≤ qH2−n because 3 , and
each invocation of the oracle EH(k,mb) makes such an H(x) query with probability
≤ 2−n because 4 .

Thus, the response of the H(k‖r0)-query performed by c← EH(k,mb) is a random
value that is used nowhere else (except with probability ≤ (qH + qE)2

−n). Thus, we can
replace that value by some fresh random value.

Game 3. Like Game 2, except that we replace c ← EH(k,mb) by r0
$← {0, 1}n,

h∗
$← {0, 1}n, c← (r0,mb ⊕ h∗). �
We have that

|Pr[b = b′ : Game 2]− Pr[b = b′ : Game 3]| ≤ (qH + qE)2
−n = ε.

To get rid of mb in Game 3, we use the fact that h∗ is chosen uniformly at random
and XORed on mb. That is, we can replace mb ⊕ h∗ by 5 .

Game 4. Like Game 3, except that we replace c← (r0,mb ⊕ h∗) by 6 . �
We have that Pr[b = b′ : Game 4] = Pr[b = b′ : Game 3]. Notice that b is not used in

Game 4, thus we have that Pr[b = b′ : Game 4] = 7 .
Combining the equations we have gathered, (1) follows. �
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