Cryptology I (spring 2020)

Dominique Unruh

Exercise Sheet 7

Out: 2020-04-23

Due: 2020-05-01

Problem 1: ElGamal FDH

Bob studied the RSA-FDH construction. He notices that RSA-FDH essentially does the following: To sign a message m, it decrypts H(m) using textbook RSA, and to check a signature σ , it encrypts σ and compares the result with H(m).

This lead him to the following idea: Instead of textbook RSA, he uses ElGamal in the construction of FDH, because ElGamal is more secure (it is IND-CPA secure, after all).

Why is the resulting scheme "ElGamal-FDH" bad?

Problem 2: Random oracle model

Write down the definition of IND-CPA security in the random oracle model (for symmetric encryption schemes).

Problem 3: Security proof in the ROM [Bonus problem]

This is a bonus problem.

Fix a hash function $H: \{0,1\}^* \to \{0,1\}^n$. We define the following block cipher with message and key space $\{0,1\}^n$:

- Encryption E: To encrypt $m \in \{0,1\}^n$ under key k, choose a random $r \in \{0,1\}^n$ and return the ciphertext $c := (r, m \oplus H(k||r))$.
- Decryption D: To decrypt c = (r, c') with key k, compute and return $m := H(k||r) \oplus c'$.

Below is a proof that this encryption scheme is $(\tau, q_E, q_H, \varepsilon)$ -IND-CPA¹ secure in the random oracle model. Fill in the gaps. (The length of the gaps is unrelated to the length of the text to be inserted.)

Proof. In the first game, we just restate the game from the IND-CPA security definition (in the random oracle model).

Game 1. $|^1$

 \diamond

To show that the encryption scheme is $(\tau, q_E, q_H, \varepsilon)$ -IND-CPA secure, we need to show that

$$|\Pr[b = b': Game \ 1] - \frac{1}{2}| \le \varepsilon \tag{1}$$

 $^{{}^{1}}q_{E}$ is the number of encryption oracle queries, and q_{H} the number of random oracle H queries performed by A.

As a first step, we replace the random oracle.

Game 2. Like Game 1, except that we define the random oracle *H* differently: $2 \\ \diamond \\$ We have $\Pr[b = b' : Game \ 1] = \Pr[b = b' : Game \ 2].$

One can see that the adversary cannot guess the key k (where k is the key used for encryption in Game 2), more precisely, the following happens with probability $\leq q_H 2^n$: "The adversary invokes H(x) with x = k || r' for some r'." (We omit the proof of this fact.)

Let r_0 denote the value r that is chosen during the execution of $c \leftarrow E^H(k, m_b)$ in Game 2. Consider the following event: "Besides the query $H(k||r_0)$ performed by $c \leftarrow E^H(k, m_b)$, there is another query H(x) with $x = k||r_0$ (performed by the adversary or by the oracle $E^H(k, \cdot)$." This event occurs with probability $q_H 2^{-n} + q_E 2^{-n}$. Namely, the adversary make such H(x) queries with probability $\leq q_H 2^{-n}$ because $\boxed{3}$, and each invocation of the oracle $E^H(k, m_b)$ makes such an H(x) query with probability $\leq 2^{-n}$ because $\boxed{4}$.

Thus, the response of the $H(k||r_0)$ -query performed by $c \leftarrow E^H(k, m_b)$ is a random value that is used nowhere else (except with probability $\leq (q_H + q_E)2^{-n}$). Thus, we can replace that value by some fresh random value.

Game 3. Like Game 2, except that we replace $c \leftarrow E^H(k, m_b)$ by $r_0 \stackrel{\$}{\leftarrow} \{0, 1\}^n$, $h^* \stackrel{\$}{\leftarrow} \{0, 1\}^n$, $c \leftarrow (r_0, m_b \oplus h^*)$.

We have that

$$|\Pr[b = b' : Game \ 2] - \Pr[b = b' : Game \ 3]| \le (q_H + q_E)2^{-n} = \varepsilon.$$

To get rid of m_b in Game 3, we use the fact that h^* is chosen uniformly at random and XORed on m_b . That is, we can replace $m_b \oplus h^*$ by 5.

Game 4. Like Game 3, except that we replace $c \leftarrow (r_0, m_b \oplus h^*)$ by $\begin{bmatrix} 6 \\ \end{bmatrix}$. \diamond We have that $\Pr[b = b' : Game \ 4] = \Pr[b = b' : Game \ 3]$. Notice that b is not used in

Game 4, thus we have that $\Pr[b = b' : Game 4] = \begin{vmatrix} 7 \\ 2 \end{vmatrix}$.

Combining the equations we have gathered, (1) follows.