
University of Tartu Prof. Dr. Dominique Unruh

Cryptology I

Short notes, spring 2020

Important note: These notes are not supposed to be self-contained. Instead, they are
intended as a reminder about which topics were discussed in the lecture. If you find
mistakes in these notes, please send them to u r h u . en u @ t e .

Contents

1 Historical ciphers 2

2 Cipher and attack types 5

3 Perfect secrecy and the one-time pad 6

4 Stream ciphers and pseudo-randomness 7
4.1 Digression – Best effort design and provable security 7
4.2 Stream ciphers with provable security . 8

5 Block ciphers 9
5.1 Data encryption standard (DES) . 9
5.2 Meet-in-the-middle attack and 3DES . 11
5.3 Security definitions . 12
5.4 Modes of operation . 13

6 Public key encryption 14
6.1 RSA . 15
6.2 ElGamal encryption . 16
6.3 Malleability and chosen ciphertext attacks 17
6.4 Hybrid encryption . 19

7 Hash functions 20
7.1 Hash functions from compressions functions 21
7.2 Constructing compression functions . 22
7.3 Birthday attacks . 22

8 Message authentication codes 22

1

9 Cryptanalysis 26
9.1 Linear cryptanalysis . 27

10 One-way functions 32

11 Random Oracle Model 34

12 Signature schemes 36
12.1 Signatures from one-way functions. 37
12.2 Full domain hash . 39

13 Symbolic cryptography 40
13.1 Analysis of the Needham-Schröder-Lowe protocol 41

14 Zero-knowledge 44
14.1 Definition . 45
14.2 Graph isomorphism . 46

15 Quantum cryptography 47

Symbol index 52

1 Historical ciphers

Shift cipher. The shift cipher uses a key K ∈ {1, . . . , 26} (often represented by the
letters A = 1, B = 2, . . .). It operates on strings consisting of letters A, . . . , Z. (Of
course, the shift cipher and the other ciphers described in this section can be based
on other alphabets as well.) To encrypt a message m = m1 . . . mn, each letter mi is
replaced by the letter that occurs k places later in the alphabet. That is, write x+ k for
the letter occurring k places after x in the alphabet (wrapping after Z; e.g., D+ 3 = G,
or W + 5 = B). Then the encryption of m under the key k is (m1 + k) . . . (mn + k).

The shift cipher can easily be broken by trying out all keys and seeing for which key
decrypting results in a meaningful plaintext (brute-force attack).

Vigenère cipher. The Vigenère cipher is a generalization of the shift cipher in different
letter of the plaintext are shifted by different amounts. Its key is a string k = k1 . . . kn
with ki ∈ {1, . . . , 26} (again each ki can be represented by a letter). The encryption
of a message m = m1 . . . mℓ under key k is (m1 + k1 mod n)(m2 + k2 mod n) . . . (mℓ−1 +
k(ℓ−1) mod n)(mℓ + kℓ mod n).

1

Since the key space of the Vigenère cipher has size 26n, except for small n, a brute-
force attack is not feasible.

1For integers a, b, a mod b is the unique number i with 0 ≤ i < a such that a = i+kb for some integer
k. I.e., a mod b is the remainder when dividing a by b.

2

If both the plaintext and the ciphertext is known, it is easy to deduce the key by
computing the difference between each letter in the ciphertext and the corresponding
letter in the plaintext. (Known-plaintext attack.)

If only a ciphertext is known, the Vigenère cipher can be broken using the following
attack:

First, assume that we already know the length n of the key k. (Below, we see how
to derive this length.) Then we can gather all the letters in the ciphertext c = c1c2 . . . cℓ
that were shifted by k1: c(1) := c1c1+nc1+2n Then c(1) is the result of applying the
shift cipher with key k1 to the plaintext p(1) := p1p1+np1+2n . . .). Thus we only have to
break the shift cipher to find out k1. But p(1) is not a meaningful plaintext (as it does not
consist of consecutive letters). Thus testing each k1 ∈ {1, . . . , 26} and checking whether
the resulting plaintext is meaningful does not work. However, we can use the fact that
the English language (and other languages) have typical letter frequencies. (I.e., some
letters are considerably more common than others.) p(1) is expected to have a similar
letter frequency as p. Thus, to find out k1, we just find a k1 such that c(1) decrypts to
a plaintext with a letter frequency close to that of the English language (or whatever
language the plaintext is written in).

To find out the length n of the key, we can either repeat the attack above for each
candidate n, or we can use the following approach (other approaches also exist!): For a
string x, let IC(x) be the probability that two randomly picked letters from x are equal.
(I.e., IC(x) = 1

|x|2
∑

i,j δxixj where δab := 1 iff a = b and δab := 0 otherwise.) We call

IC(x) the index of coincidence of x. Different languages have different typical indices
of coincidence. E.g., English text typically has IC(x) ≈ 0.067 while random text has
IC(x) ≈ 1/26 ≈ 0.0385. Since the index of coincidence does not change when applying
a shift cipher, we expect that for the right key length n, we have IC(c

(i)) to be close to
the index of coincidence of the source language while for the wrong n it is expected to
be closer to that of random text. Thus, we search for an n such that IC(c

(i)) becomes as
large as possible.

Substitution cipher. The key of the substitution cipher is a permutation π on
{A, . . . , Z}. The encryption of m = m1 . . . mℓ is c = π(m1) . . . π(mℓ). I.e., each let-
ter is replaced by its image under the permutation.

A brute-force attack is again infeasible. There are 26! ≈ 4 · 1026 different keys.
However, frequency analysis helps to identify candidates for the image of the permu-

tation of the most common letters. For example, in the encryption of an English text, if
the letter x is the most common letter of the ciphertext, it is likely that π(e) = x (since
e is the most common letter in English text). In this way we get candidates for π(m)
for the most common letter m. However, due to statistical noise, this method will fail
to give reliable results for rare letters. To break the substitution cipher one typically
additionally makes use of the frequencies of digrams (two letter sequences) and trigrams
(three letter sequences) in the plaintext language. (For example, the most common tri-
grams in English are the and and.) By identifying di/trigrams that appear often in the
ciphertext, we get additional candidates for images of π. (E.g., if kso appears often, it

3

is a good guess that π(t) = k, π(h) = s, π(e) = o or π(a) = k, π(n) = s, π(d) = o.) By
combining the informations we get in this way, it is usually easy to break a substitution
cipher.

Permutation cipher. The key of the permutation cipher is a permutation
π on {1, . . . , n} for some n. To encrypt a plaintext m, we cut it into
blocks of length n and reorder each block according to π. I.e., c =
mπ−1(1) . . . mπ−1(n)mn+π−1(1) . . . mn+π−1(n)m2n+π−1(1) . . . m2n+π−1(n)

2

The key-space has size n!, brute-force attacks are thus infeasible for reasonably
large n.

To break the permutation cipher, one can try to reorder letters in the ciphertext in
order to produce many common trigrams in the different blocks of the ciphertext. We
do not give details here.

Enigma. The Enigma (a cipher machine used by the Germans in World War II) con-
tains the following components:

• Keyboard: On the keyboard, a letter from A to Z can be typed. Depending on the
letter that is typed, a corresponding wire that leads to the plugboard will carry
electricity.

• Plugboard: The plugboard allows to select pairs of wires to be switched. That is,
if we connect, e.g., A and Q on the plugboard, the letters A and Q will be swapped
before being fed to the rotors.

• 3-4 rotors: The rotors are wheels that with 26 inputs on one side and 26 outputs
on the other side. The inputs are connected to the outputs in a permuted fashion.
Each rotors output is connected to the next rotors input. (Except for the last one,
of course.) Upon each keypress, the rightmost (initial) rotors is rotated by one
position. When the rightmost rotor finishes a turn, the next rotor is rotated by
one position.

• Reflector: The reflector takes the output wires of the leftmost rotor, and connects
them pairwise. This has the effect that the current coming from one output of the
leftmost rotor flows back into another outputs and goes back through all the rotors,
through the plugboard, to the lamps.

• Lamps: For each letter, we have a lamp that finally lights up and represents the
current letter of the ciphertext.

An important property of the reflector is that the encryption of any letter in the
plaintext can never be encrypted to itself. (I.e., if c is the encryption of m, then ci 6= mi

for all i.)

2Instead of using the inverse π−1 of the permutation, we could also use π itself. Choosing π−1 makes
the description compatible with the example in the lecture.

4

The Enigma is highly non-trivial to break, but combined efforts of the British and the
Polish managed to break it. The fact that the reflector ensures that no letter is mapped
to itself was an important weakness (because it reveals something about the plaintext)
that was exploited in breaking the Enigma.

2 Cipher and attack types

The ciphers presented in the preceding section fall into three categories:

• Monoalphabetic substitution ciphers: Each letter of the ciphertext depends only on
the corresponding letter of the plaintext (i.e., the letter at the same position), the
dependence is the same for each letter of the ciphertext. (Examples: shift cipher,
substitution cipher.)

• Polyalphabetic substitution ciphers: Each letter of the ciphertext depends only on
the corresponding letter of the plaintext (i.e., the letter at the same position), the
dependence is different for different letters of the ciphertext. (Examples: Vigenère
cipher, Enigma.)

• Transposition ciphers: The letters of the plaintext are not changed, only reordered.
(Example: permutation cipher).

Of course, combinations of these types or encryption schemes that do not fall into
any of these categories exist.

We also distinguish various attack types:

• Ciphertext-only attack : Here the attack is performed given only the knowledge
of the ciphertext. This is the most difficult attack. We have described/sketched
ciphertext-only attacks for the historical ciphers except the Enigma.

• Known-plaintext attack (KPA): Here the attacker is additionally given the plaintext
corresponding to the ciphertext. The goal is to learn the key (or to decrypt other
ciphertexts for which we do not have the plaintext). For the ciphers in the preceding
section (except the Enigma), known-plaintext attacks are trivial. Known-plaintext
attacks are a relevant threat because in many cases the attacker may have some
side information (such as typically used headers) that allow him to deduce (parts
of) some plaintexts.

• Chosen-plaintext attack (CPA): Here the attacker may even obtain ciphertexts cor-
responding to plaintexts of his choosing. This is motivated by the fact that often
data we encrypt is not guaranteed to come from trusted sources. Thus some of our
ciphertexts may contain plaintexts from the adversary.

• Chosen-ciphertext attack (CCA): Here the attacker may in addition request to get
the decryptions (plaintexts) of arbitrary ciphertexts of his choosing. This is moti-
vated by the fact that we cannot always trusted the provenance of the ciphertexts
we decrypt.

5

We will study security against CPA and CCA in more formal detail later in the lecture.

3 Perfect secrecy and the one-time pad

Perfect secrecy was introduced by Claude Shannon to be able to define and analyze the
security of encryption schemes.

Definition 1 (Perfect secrecy) Let K be the set of keys, let M be the set of messages,
and let E be the encryption algorithm (possibly randomized) of an encryption scheme.
We say the encryption scheme has perfect secrecy iff for all m0,m1 ∈ M and for all c,
we have that

Pr[c = c′ : k
$← K, c′ ← E(k,m0)]

=Pr[c = c′ : k
$← K, c′ ← E(k,m1)].

In the preceding definition, we used the following notation for probabilities: Pr[B : P]
denotes the probability that B is true after executing the “program” P . In P , we use

x
$← Y to denote that x is uniformly randomly chosen from the set Y . And x ← A(z)

denotes that x is assigned the output of the algorithm or function A with arguments z.
Thus, the definition requires that if we encrypt m0 or m1 with a random key, the

probability to get a given ciphertext c will be the same in both cases.

The following scheme has perfect secrecy:

Definition 2 (One-time-pad) Let K := {0, 1}n be the key space and M := {0, 1}n the
message space. (Notice that K = M .) Then the one-time-pad encryption E(k,m) of
message m ∈ M under key k ∈ K is defined as E(k,m) := k ⊕m where ⊕ denotes the
bitwise XOR.

Lemma 1 The one-time-pad has perfect secrecy.

Although the one-time-pad has perfect secrecy, it has three major disadvantages:

• The key has to be as long as the message.

• The one-time-pad is malleable. That is, by modifying the ciphertext, one can
modify the contained plaintext. For example, given a ciphertext c = E(k,m), by
flipping the i-th bit of c, one gets a ciphertext of m′ which is m with the i-th bit
flipped. If m is, e.g., an order for a bank transaction of 1000 e, by flipping the
right bit one gets a transaction of 9000 e. (This problem can be solved by applying
“message authentication codes” to the message.)

• The one-time-pad does not allow to reuse keys. Given cipertexts c0 = E(k,m0)
and c1 = E(k,m1) with the same key, we can compute c0 ⊕ c1 = m0 ⊕m1 which
leaks a lot of information about m0 and m1 (possibly all if m0 and m1 are, e.g.,
English words).

6

Can we improve on the one-time-pad in terms of the key length? I.e., is there an
encryption scheme with perfect secrecy that has keys shorter than the message? The
following theorem shows that this is impossible:

Theorem 1 There is no encryption scheme that has the following three properties:
• Perfect secrecy.
• |K| < |M | where K is the key space and M is the message space.
• When encrypting a message and then decrypting it, we always get the original

message back.

4 Stream ciphers and pseudo-randomness

A (synchronous) stream cipher is an encryption scheme that is constructed as follows:
Let G : K →M be a pseudo-random generator (PRG), i.e., a function that takes a short
random string k ∈ K and outputs a long “random-looking” string G(k) ∈ M . Then, to
encrypt a message m ∈ M , we compute G(k), the so-called “key-stream” and then we
XOR m with G(k). I.e., the encryption of m is G(k) ⊕m. (This is reminiscent of the
one-time-pad, except that we use the pseudo-random string G(k) to pad the message
instead of using a long random key.)

4.1 Digression – Best effort design and provable security

There are two main approaches for designing cryptographic schemes in modern cryptog-
raphy.

Best-effort design. 3 While designing the scheme, one tries to make it as secure as
possible, but without proving its security. One does, however, take into account the
state-of-the-art in cryptanalysis (the science of attacking cryptosystems), and tries to see
whether any know attack techniques allow to break the cipher. One publishes the scheme
internationally, and lets other teams of researchers try to attack it. If any of the attacks
works the scheme is discarded. Even if the scheme shows slight weaknesses under any
of the attacks, the scheme is usually discarded (because such weaknesses might be an
indication of more problems that could be found later). If the scheme survives all this,
it can be used.

Provable security. In provable security, one designs the scheme based on some
complexity-theoretic assumption. For example, one could assume that factoring large
integers is hard. Based on this assumption, one mathematically proves that the scheme
is secure. Although this does not necessarily imply that the scheme is indeed secure
(because factoring might not be hard), it gives a great deal of trust into the scheme

3The word “best-effort design” is not a generally known term, I chose the word to describe the
methodology.

7

because the security of the scheme is based on a well-studied problem. Even if no cryp-
tographer studies the new scheme, indirectly many people have studied its security by
studying the underlying assumption. (Of course, one should use realistic and well-studied
assumptions!)

Whether best-effort design or provable security is to be preferred is a matter of opinion
and of the particular situation. In the case of stream ciphers, block ciphers, and hash
functions, typically schemes developed using best-effort design are much faster. Also,
for these kinds of functions, best-effort design seems to work well. On the other hand,
public key encryption schemes and signatures do not lend themself very well to best-effort
design: Such cryptosystems often have a rich underlying mathematical structure which
may lead to many attack possibilities. A proof is needed to exclude all of them. Also,
in the case of these cryptosystems, the gap in efficiency between provable security and
best-effort design is much smaller.

4.2 Stream ciphers with provable security

We now describe how to build streamciphers with provable security. For this, we first
need to define the security of streamciphers that we wish to achieve.

Definition 3 (IND-OT-CPA) An encryption scheme (KG , E,D) consisting of a key-
generation algorithm KG, an encryption algorithm E, and a decryption algorithm D is
(τ, ǫ)-IND-OT-CPA (indistinguishable under one-time chosen plaintext attacks) if for any
τ -time algorithm A, we have that

∣

∣

∣
Pr[b = 1 : k ← KG(), (m0,m1)← A(), c← E(k,m0), b← A(c)]

−Pr[b = 1 : k ← KG(), (m0,m1)← A(), c← E(k,m1), b← A(c)]
∣

∣

∣
≤ ε.

(Here we quantify only over algorithms A that output (m0,m1) with |m0| = |m1|.)

Intuitively, this definition means that no polynomial-time adversary, upon seeing an
encryption of either m0 or m1 (both of his choosing), can guess which of the two messages
has been encrypted (at least not better than by guessing).

Next, we define what assumption we use. For the moment, we use an assumption
that is rather strong, namely the existence of pseudo-random generators.

Definition 4 (Pseudo-random generator) A function G : K → M is a (τ, ε)-
pseudo-random generator (PRG) if for all τ -time algorithms A, we have that

∣

∣

∣
Pr[b = 1 : k

$← K, p← G(k), b← A(p)] − Pr[b = 1 : p
$←M, b← A(p)]

∣

∣

∣
≤ ε.

Intuitively, this definition says that, without seeing the seed k, no polynomial-time
adversary can distinguish between the pseudo-random p0 := G(k) and a truly random p1.

We can then construct a streamcipher from a PRG:

8

Construction 1 Fix a PRG G : K → M = {0, 1}n. We construct a streamcipher
(KG , E,D) with key space K and message space M as follows: The key generation
KG(1λ) returns a uniformly random k ∈ K. Encryption: E(k,m) := G(k)⊕m. Decryp-
tion: D(k, c) := G(k)⊕ c.

Theorem 2 If G is a (τ, ε)-PRG in the sense of Definition 4, then the streamcipher
from Construction 1 is (τ −O(n), 2ε)-IND-OT-CPA secure.

The main idea of the proof is to start with an adversary A that breaks the stream-
cipher, and to construct an adversary A′ from A that breaks the PRG. (Such a proof is
called a reduction proof .)

5 Block ciphers

A block cipher is an encryption scheme that deterministically encrypts messages of a fixed
length. More precisely, a block cipher consists of an encryption function E : {0, 1}n ×
{0, 1}l → {0, 1}l , and a decryption function D : {0, 1}n × {0, 1}l → {0, 1}l such that for
all k ∈ {0, 1}n and all m ∈ {0, 1}l, we have D(k,E(k,m)) = m. Here n is the key length
and l the message/block length. (In practice, n and l are usually fixed. In theoretical
analyses, n and l often depend on some security parameter η.)

The advantage of block ciphers is that block ciphers can typically be implemented in
a very fast way (in software and hardware), and that they are much more versatile in
their use than streamciphers (by using them as part of so-called “modes of operation”,
see Section 5.4).

Designing block ciphers. Most block ciphers are designed using best-effort design
(see page 7). That is, when designing a block cipher, the block cipher is designed to
withstand all known attack techniques. When designing a block cipher, any of the
following would count as an attack:

• If there is any reasonable security definition for block ciphers such that the block
cipher does not satisfy that security definition, then the block cipher is considered
broken.

• If there is any attack on the block cipher that is any faster than a brute-force
attack, then the block cipher is considered broken.

5.1 Data encryption standard (DES)

DES (data encryption standard) is a block cipher first published in 1977 that was in use
for about 25 years. Today, DES is not considered secure any more. Its key length is
only 56 bits, and it can be broken by a brute-force attack within only a day with modern
special-purpose hardware. The block length of DES is 64 bits.

We will now describe the construction of DES.

9

Feistel networks. To do so, we first describe a concept that is used in DES and in
many other block ciphers, the Feistel network .

A Feistel network is a particular way of encrypting messages. The core of a Feistel
network for message blocks of length 2l is a function F : {0, 1}n × {0, 1}l → {0, 1}l
that takes a key and a message halfblock and outputs a halfblock. The encryption of a
message m using an r-round Feistel network proceeds as follows:

• Split the message m ∈ {0, 1}2l into two block L,R ∈ {0, 1}l.

• Run the following for i = 1, . . . , r − 1:

– L := L⊕ F (ki, R). Here ki is the so-called round key for the i-th round (see
below).

– (L,R) := (R,L) (exchange L and R).

• L := L⊕ F (kr, R).

• Let c be the concatenation of L and R and return c.

Note that the operation of the Feistel network depends on so-called round keys k1, . . . , kr.
A block cipher that uses a Feistel network as part of its operation has to specify these
round keys.

Notice that, when knowing the round keys of a Feistel network, one can easily decrypt.
When c is the result of applying a Feistel network with round keys k1, . . . , kr to some
m, and m′ is the result of applying the same Feistel network (with the same function F)
with round keys kr, . . . , k1, then m = m′.

High-level structure of DES. The DES block cipher consists of the following com-
ponents:

• A key schedule: The key schedule computes the round keys k1, . . . , k16 from the
56-bit DES key k. Each ki has length 48 bit and consists of a reordered subset of
the bits of k. We do not describe the details of the key schedule.

• An initial permutation: This is a permutation (reordering) of the message block.

• A 16-round Feistel network with a round function F that will be described below.

• A final permutation: This is the inverse of the initial permutation.

To encrypt a message m ∈ {0, 1}64 with a key k ∈ {0, 1}56, we use the key schedule
to derive the round keys k1, . . . , k16. Then the message is reordered using the initial
permutation, then fed through the Feistel network using the round keys k1, . . . , k16, and
then reordered using the final permutation. This gives the ciphertext.

To decrypt a DES ciphertext c, we perform exactly the same operations, except that
we let the key schedule produce the round keys in opposite order k16, . . . , k1. Since this
will make the Feistel network decrypt, and since the initial and the final permutation are
inverses of each other, this will decrypt c.

10

The Feistel round function F . The Feistel round function is the core of the DES
block cipher. It performs the following steps (given a message halfblock m ∈ {0, 1}32
and a round key ki ∈ {0, 1}48):

• Expansion: Computes a ∈ {0, 1}48 from m by duplicating some of the bits. We
omit the details.

• Use round key: Compute b := a⊕ ki.

• Split: Split b into 8 blocks b1, . . . , b8 of 6 bits each.

• Apply S-boxes: Compute d1 := S1(b1), . . . , d8 := S8(b8) where S1, . . . , S8 are
some fixed functions from 6 to 4 bits. The functions S1, . . . , S8 are called S-boxes.
They are designed to be as structureless as possible and are usually given as lookup
tables.

• Concatenate: Let d ∈ {0, 1}32 be the concatenation of d1, . . . , d8.

• Permutation: Apply a fixed permutation (reordering) to the bits in d, resulting in
some reordered bitstring e. We omit the details.

• Return e.

The key components here are the S-boxes and the permutation. The S-boxes make
sure that the dependencies between the input, the key, and the output of F are no simple
linear functions but are instead as complicated as possible. Furthermore, to make sure
that each input bit influences as many output bits as possible, the permutation shuffles
the bits.

The concept of having complicated operations and of mixing the bits when designing
ciphers was already identified by Shannon and called confusion and diffusion.

5.2 Meet-in-the-middle attack and 3DES

Since the main weakness of DES is its short key length, it seems natural to try to
strengthen DES by applying DES twice with different keys, thus doubling the effective
key length. More precisely, we can define the following block cipher:

Definition 5 (Double DES) Let E′ and D′ denote the encryption and decryption al-
gorithms of DES. Then we define the block cipher double DES with block length 64,
key length 112, and encryption/decryption algorithms E and D as follows: E(k,m) :=
E′(k2, E

′(k1,m)) and D(k, c) := D′(k1,D
′(k2, c)) where k1 and k2 denotes the first and

second half of k ∈ {0, 1}112, respectively.

It seems that double DES is much stronger than DES: For a brute force attack, we
need to try all 112 bit keys. However, there is another known plaintext attack on double
DES, called the meet-in-the-middle attack. This attack is performed as follows:

11

• Let m and c be a plaintext/ciphertext pair. (I.e., c = E(k,m) for some unknown
key k = k1k2 and E being the double DES encryption operation.)

• For each k1 ∈ {0, 1}56, compute a := E(k1,m) and store (a, k1) in a table.

• Sort the table containing the pairs (a, k1) by the first component a. (Such that one
can efficiently find (a, k1) given a.)

• For each k2 ∈ {0, 1}56, compute b := D(k2, c). Search for an (a, k1) in the table
with a = b. If found, call (k1, k2) a candidate key pair. (The candidate key pairs
will be all k1k2 with E(k1k2,m) = c.)

• For each candidate key pair k1k2, test whether c′ = E(k1k2,m
′) for other mes-

sage/ciphertext pairs (c′,m′). If so, then k1k2 is probably the right key.

This attack takes more time than breaking DES by bruteforce, because we addi-
tionally have to sort a table of 256 entries. However, it takes considerably less time
than doing a brute-force attack with key length 112 (that would need 2112 encryptions).
Notice, however, that this attack needs a very large amount of memory.

Due to the meet-in-the-middle attack, double DES is not considered a good replace-
ment for DES. Instead, a scheme called triple DES was used:

Definition 6 (Triple DES) Let E′ and D′ denote the encryption and decryption al-
gorithms of DES. Then we define the block cipher triple DES with block length 64,
key length 168, and encryption/decryption algorithms E and D as follows: E(k,m) :=
E′(k3,D

′(k2, E
′(k1,m))) and D(k, c) := D′(k1, E

′(k2,D
′(k3, c))) where k1, k2 and k3

denotes the first, second, and third 56 bit block of k ∈ {0, 1}168, respectively.

Notice that even if we apply the meet-in-the-middle attack to 3DES, the time com-
plexity will be in the order of 2112. (We either have to iterate over all k1k2 when building
the table, or we have to iterate over all k2k3 when using the table.)

A variant of 3DES uses keys with k1 = k3 (but k1 and k2 uniformly and independently
chosen).

Also, when choosing k1 = k2 = k3, then E(k1k2k3,m) = E′(k1,m). Thus triple DES
can emulate DES, saving costs in hardware when it is necessary to support both DES
and 3DES for legacy reasons.

5.3 Security definitions

An example of a security definition that block ciphers are usually expected to satisfy is the
following. Intuitively, it means that, without knowing the key, the encryption/decryption
looks like applying a totally random permutation and its inverse.

Definition 7 (Strong pseudo-random permutation) A function f : K ×M → M
is a (τ, q1, q2, ε)-strong pseudo-random permutation (strong PRP) if:

12

• There is a function f−1(k,m) such that f−1(k, f(k,m)) = m for all k ∈ K, m ∈M .
(In practice, we would want both f and f−1 to be efficient, otherwise the PRP is
useless. However, we do not add this requirement to the security definition.)

• For all τ -time algorithms A making at most q1, q2 queries to f, f−1, we have

∣

∣Pr[b = 1 : k
$← K, b

$← Af(k,·),f−1(k,·)()]

− Pr[b = 1 : π
$← PermM , b

$← Aπ,π−1

()]
∣

∣ ≤ ε.

In the above definition, we use the notation AX to denote that the algorithm A may
make arbitrary many queries to the function X, that is, A gets X(x) for any x that A
sends to X. We write f(k, ·) for the function mapping x to f(k, x). And PermM denotes
the set of all permutations (bijective functions) on M .

However, although strong PRP is quite a strong security guarantee, using a strong
PRP for encrypting is not in general a good idea. Since a strong PRP (and any block
cipher) is deterministic, when sending two messages encrypted with the same key, the
adversary can tell whether the messages are equal or not. A better definition of security
of encryption schemes is the following:

Definition 8 (IND-CPA) An encryption scheme (KG , E,D) consisting of a key-
generation algorithm KG, an encryption algorithm E, and a decryption algorithm D
is (τ, ε)-IND-CPA (indistinguishable under chosen plaintext attacks) if for any τ -time
algorithm A we have that

∣

∣Pr[b = 1 : k ← KG(), (m0,m1)← AE(k,·)(), c← E(k,m0), b← AE(k,·)(c)]

− Pr[b = 1 : k ← KG(), (m0,m1)← AE(k,·)(), c← E(k,m1), b← AE(k,·)(c)]
∣

∣ ≤ ε.

(Here we quantify only over algorithms A that output (m0,m1) with |m0| = |m1|.)

In this definition, A has access to E(k, ·). That is, A can produce arbitrary many
additional encryptions beside the challenge encryption c. Thus the definition models the
fact that the adversary knows nothing about the content of c even if the same key is used
for other encryptions.

However, block ciphers (and any other deterministic encryption schemes) cannot sat-
isfy this definition. In the next section, we describe how to use block ciphers to construct
encryption schemes that are IND-CPA secure.

5.4 Modes of operation

Since a block cipher only allows to encrypt messages of fixed length, it is not, on its own,
very useful. Instead, a block cipher is typically used as part of a mode of operation that
describes how to apply it to larger messages. A mode of operation can also raise the
security of the block cipher (e.g., by making the resulting encryption scheme IND-CPA
secure).

13

In the following, we assume a block cipher with encryption E and decryption D and
block length l and key length n. Furthermore, we assume that the messages we wish to
encrypt have a length that is a multiple of l. Otherwise, padding needs to be used to
enlarge the message to a multiple of l. Let m denote the message to be encrypted, and
m1, . . . ,mk be the message blocks of length l. And let k denote a key.

Electronic code book mode (ECB mode) In ECB mode, we compute ci :=
E(k,mi), and the resulting ciphertext is c := c1 . . . cn (concatenation of the ci).

ECB mode is not a very secure mode of operation. If m contains many repetitions,
c will also contain repetitions. In general, c will leak information about the structure of
m. E.g., when encrypting pictures using ECB mode, one can sometimes still recognize
the picture.

Cipher block chaining mode (CBC mode) In CBC mode, to encrypt m, we first
pick a random IV ∈ {0, 1}l. This value is called the initialization vector . Then we set
c0 := IV and ci+1 := E(k,mi+1 ⊕ ci). The resulting ciphertext is c := c0c1 . . . ck.

Theorem 3 Assume that E is a strong PRP. Let (KG ′, E′,D′) denote the encryption
scheme that uses CBC mode with E as the block cipher. (That is KG ′ returns a uni-
formly chosen k ∈ {0, 1}n and E′ computes c := c0c1 . . . ck as described above.) Then
(KG ′, E′,D′) is IND-CPA secure.

Counter mode (CTR mode) In CTR mode, to encrypt m, we first pick a random
IV ∈ {0, 1}l. This value is called the initialization vector . Then we set c0 := IV and
ci := E(k, IV + i mod 2l)⊕mi. The resulting ciphertext is c := c0c1 . . . ck.

Notice the strong similarity to stream ciphers.

Theorem 4 Assume that E is a (τ, ε)-strong PRP. Let (KG ′, E′,D′) denote the encryp-
tion scheme that uses counter mode with E as the block cipher. (That is KG ′ returns a
uniformly chosen k ∈ {0, 1}n and E′ computes c := c0c1 . . . ck as described above.) Then
(KG ′, E′,D′) is (τ − O(ℓN), O(N22−ℓ))-IND-CPA secure. (Here ℓ is the block length,
and N is the number of encrypted blocks.)

6 Public key encryption

A public key encryption scheme (or asymmetric encryption scheme) is an encryption
scheme in which there are two keys: A public key that is used for encrypting, and a
secret key that is used for decrypting. It should not be possible to decrypt the message
when knowing only the public key.

This allows a person A to distribute its public key to everyone, and to keep just a
single secret key to decrypt all incoming messages. Distributing public keys is usually
done using a public key infrastructure (PKI): A PKI is a trusted authority that keeps a
list of public keys of known individuals and provides these public keys to any interested
party. (Using suitable mechanisms to ensure authenticity.)

14

In contrast, with symmetric encryption schemes (this means encryption schemes as
in Sections 4 and 5 where encrypting and decrypting use the same key), each pair of
potential communication partners needs to establish their own key pair, increasing the
logistic challenge considerably.

Mathematics background. The following sections assume some knowledge about
modular arithmetic. If you are not familiar with it, you might find a
short overview in, e.g., Chapter 2 of [MvV96]. (You find it online here:
http://www.cacr.math.uwaterloo.ca/hac/about/chap2.pdf.)

6.1 RSA

Definition 9 (Textbook RSA) The RSA public key encryption scheme is the encryp-
tion scheme (KG , E,D) which is defined as follows:

• Key generation: KG() does the following: Pick p, q
$← Primesn/2 where Primesn/2

is the set of all primes of length n/2. (Here n is a parameter of the scheme.
Typical values are 2048 or 4096.) Let N := pq. Let ϕ(N) := (p − 1)(q − 1). Pick
e ∈ {0, . . . , ϕ(N) − 1} such that e is relatively prime to ϕ(N). Compute d with
ed ≡ 1 mod ϕ(N). Let pk := (N, e) and sk := (N, d). Return (pk , sk).

• Encryption: E(pk ,m) with pk = (N, e) and m ∈ {0, . . . , N−1) returns me mod N .
• Decryption: D(sk , c) with sk = (N, d) returns cd mod N .

Notice that textbook RSA is not well-suited as an encryption scheme on its own.
For example, RSA is deterministic, and one can therefore recognize if the same message
is encrypted twice. And, given a guess that the ciphertext c contains a message m,
one can efficiently verify that guess. In particular, RSA is not IND-CPA secure. (See
Definition 13 below.)

However, there are encryption schemes based on textbook RSA (which are sometimes
misleadingly just called RSA) that improve on RSA and make it considerably more secure.

The security of textbook RSA cannot (according to the current state of knowledge)
be reduced to some simpler assumption. It is, however, often used as an assumption on
its own:

Definition 10 ((τ, n, ε)-RSA assumption) For any τ -time algorithm A we have that

Pr
[

m = m′ : p, q
$← Primesn/2, N ← pq,m

$← {0, . . . , N − 1},
e

$← {0, . . . , ϕ(N) − 1},m′ ← A(N, e,me mod N)
]

≤ ε.

Deciding on a proper value of ε (given τ and n) is a difficult problem. The best
approach (at the moment) is to study the state of the art in integer factorization, and to
take the estimated running time Tn of the best known factoring algorithm for integers of
length n as a guideline (while being suitably conservative, i.e., rather assuming that algo-
rithms are better than worse). Then one can assume the (τ, n, τ/Tn)-RSA-assumption.

15

http://www.cacr.math.uwaterloo.ca/hac/about/chap2.pdf

6.2 ElGamal encryption

Definition 11 (ElGamal encryption – generic group based description) The
ElGamal public key encryption scheme4 is the encryption scheme (KG , E,D) which is
defined as follows:

• Key generation: KG() does the following: Let G be some fixed cyclic group. Pick a
generator g of G.5 Pick x ∈ {0, . . . , |G| − 1}. Let h := gx. Let pk := (G, g, h) and
sk := (G, g, x).

• Encryption: E(pk ,m) with pk = (G, g, h) and m ∈ G picks y
$← {0, . . . , |G| − 1}

and returns (gy,m · hy).
• Decryption: D(sk , c) with sk = (G, g, x) and c = (c1, c2) returns c2 · (cx1)−1.

Note: One can also generalize this to include an algorithm into the key generation
that picks the group G randomly from some set of cyclic groups. For simplicity, we only
state ElGamal for a fixed group G.

The above can be made concrete by choosing G as follows: Let p be a prime of the
form p = 2q + 1 where q is prime. Then G is the unique subgroup of Z∗

p of order (i.e.,
size) q. Or differently: G := {a : a = 1, . . . , p−1, aq ≡ 1 mod p} where (a,N) = 1 means
that the gcd of a and N is 1.

Definition 12 (ElGamal encryption – concrete instance) The ElGamal public
key encryption scheme6 is the encryption scheme (KG , E,D) which is defined as follows:

• Key generation: KG() does the following: Let p be some fixed prime such that
p = 2q + 1 for some prime q (we call such a prime a safe prime). Pick g ∈
{2, . . . , p− 1} such that gq ≡ 1 mod p. Pick x ∈ {0, . . . , q− 1}. Let h := gx mod p.
Let pk := (p, q, g, h) and sk := (p, q, g, x).

• Encryption: E(pk ,m) with pk = (p, q, g, h) and m ∈ {1, . . . , p − 1} and mq ≡
1 mod p: Pick y

$← {0, . . . , q − 1} and return (gy mod p,m · hy mod p).
• Decryption: D(sk , c) with sk = (p, q, g, x) and c = (c1, c2) returns c2 · (cx1)−1 mod p

where (cx1)
−1 denotes the integer satisfying (cx1)

−1 · (cx1) ≡ 1 mod p.

We now proceed to state the security of ElGamal For this, we first need to state the
definition of IND-CPA security for the case of public key encryption.

Definition 13 (IND-CPA (public key encryption)) A public key encryption
scheme (KG , E,D) consisting of a key-generation algorithm KG, an encryption al-
gorithm E, and a decryption algorithm D is (τ, ε)-IND-CPA (indistinguishable under
chosen plaintext attacks) if for any τ -time algorithm A we have that

∣

∣Pr[b = 1 : (pk , sk)← KG(), (m0,m1)← A(pk), c← E(pk ,m0), b← A(c)]

− Pr[b = 1 : (pk , sk)← KG(), (m0,m1)← A(pk), c← E(pk ,m1), b← A(c)]
∣

∣ ≤ ε.

(Here we quantify only over algorithms A that output (m0,m1) with |m0| = |m1|.)
4Not to be confused with the unrelated ElGamal signature scheme.
5A generator of G is an element such that for every a ∈ G, there exists a x ∈ Z such that a = gx.
6Not to be confused with the unrelated ElGamal signature scheme.

16

Notice that in contrast to Definition 8, the adversary gets the public key pk as input
because pk is considered public information. Furthermore, we have not given the oracle
E(pk , ·) to A. Since A knows pk , he can compute anything himself that E(pk , ·) would
compute.

Next, we state the assumption under which the security of ElGamal is shown.
Again, there is a generic variant (parametrized over how we choose the group in which

we work), and a concrete variant for integers modulo p.

Definition 14 (Decisional Diffie-Hellman (DDH) assumption – generic group based description)
Fix some cyclic group G.

The (τ, ε)-DDH assumption (for G) states: For any τ -time algorithm A we have that

∣

∣Pr[b = 1 : g
$← {g : g is generator of G}, x, y $← {0, . . . , |G| − 1}, b← A(p, g, gx, gy, gxy)]

−Pr[b = 1 : g
$← {g : g is generator of G}, x, y, z $← {0, . . . , |G| − 1}, b← A(p, g, gx, gy , gz)]

∣

∣ ≤ ε.

Note: one can also generalize this definition to include an algorithm GroupGen() that
picks the group G randomly. But for simplicity, we only state the DDH-assumption for
a fixed group G.

Definition 15 (Decisional Diffie-Hellman (DDH) assumption – concrete instance)
The (τ, ε, η)-DDH-assumption states:

For any safe prime p of length η, and any τ -time algorithm A we have that

∣

∣Pr[b = 1 : q := (p− 1)/2, g
$← {g = 2, . . . , p− 1 : gq ≡ 1 mod p},

x, y
$← {0, . . . , q − 1}, b← A(p, g, gx mod p, gy mod p, gxy mod p)]

−Pr[b = 1 : q := (p− 1)/2, g
$← {g = 2, . . . , p− 1 : gq ≡ 1 mod p},

x, y, z
$← {0, . . . , q − 1}, b← A(p, g, gx mod p, gy mod p, gz mod p)]

∣

∣ ≤ ε.

Theorem 5 If the (τ, ε)-DDH-assumption holds then the ElGamal encryption scheme is
(τ − τmult , 2ε)-IND-CPA secure.

Here τmult refers to the time needed to perform one multiplication in the group.

6.3 Malleability and chosen ciphertext attacks

Malleability denotes the property of an encryption scheme that the adversary can change
the content of a ciphertext without knowing the content. That is, upon reception of a
ciphertext c = E(pk ,m), the adversary can produce a ciphertext c′ = E(pk ,m′) where
m′ = f(m) and f is some function the adversary knows. (A precise definition of this is
more complex because it also covers other dependencies between m and m′, and possibly
more than one input message.)

Note: Malleability denotes a weakness of an encryption scheme. To express that we
have an encryption scheme where honest parties can transform E(pk ,m) into E(pk ,m′),
we speak of homomorphic encryption.

17

It is easy to see that both textbook RSA and ElGamal are malleable. Given an
RSA ciphertext c = E(pk ,m) with pk = (N, e), we can compute c′ = E(pk , am mod N)
as c′ := aec mod N . And given an ElGamal ciphertext c = (c1, c2) = E(pk ,m) with
pk = (p, g, h), we can compute c′ = E(pk , am mod p) as c′ = (c1, ac2 mod p).

But why is malleability a problem?

Auction example. Imaging an auction of the following kind: Two bidders send en-
crypted bids c1 := E(pk , bid1) and c2 := E(pk , bid2) to the auctioneer (pk is the public
key of the auctioneer). The bids are encrypted in order to make sure that none of the
bidders can make his bid depend on the bid of the other bidder. However, if E is mal-
leable, this is not necessarily the case. Bidder 2 could, after seeing c1, use malleability
to produce a bid c2 = E(pk , 2 · bid1) and thus consistently overbid bidder 1. (This works
both with textbook RSA and with ElGamal.)

Chosen ciphertext attack. Imagine the following protocol. A client wishes to send
a command cmd ∈ C := {cmd1, cmd2} to a server. The protocol we use is that the
client sends c := E(pk , cmd) to the server where pk is the public key of the server. The
server decrypts c, and if the resulting plaintext is not in C, the server replies with error.
We assume that cmd1 and cmd2 are encoded as integers so that we can use ElGamal to
encrypt cmd . Our security requirement is that cmd stays secret from an adversary.7

To attack this protocol (when using ElGamal), the adversary can do the following:
First, the adversary computes a := cmd1 · cmd2−1 where cmd2

−1 is the integer with
cmd2 · cmd2−1 ≡ 1 mod p. (Assuming pk = (p, g, h).) Then, after intercepting c =
E(pk , cmd), using the malleability of ElGamal, he computes c′ = E(pk , a · cmd mod p).
If cmd = cmd1, then c′ = E(pk , cmd12 · cmd2−1). Since cmd1

2 · cmd2−1 is unlikely
to be in C, the server responds with an error message. If cmd = cmd2, then c′ =
E(pk , cmd1 ·cmd2−1 ·cmd2) = E(pk , cmd1). Hence the server does not reply with an error
message. Thus, by observing whether the server sends an error message, the adversary
learns the value of cmd .

Hence malleability can, in the case of a chosen ciphertext attack, lead to a loss of
secrecy. Thus, at least in some situations, IND-CPA is too weak a security notion.

A stronger notion (that excludes malleability) is the following. It models that the
scheme is secret even if the adversary can make a chosen ciphertext attack. More pre-
cisely, the adversary cannot learn anything about the content of a message c, even if he
is allowed ask for decryptions of arbitrary messages (except a decryption of c itself, of
course).

Definition 16 (IND-CCA (public key encryption)) A public key encryption
scheme (KG , E,D) consisting of a key-generation algorithm KG, an encryption algo-
rithm E, and a decryption algorithm D is (τ, q, ε)-IND-CCA (indistinguishable under

7With textbook RSA, this is obviously not the case, because to find out whether c = E(pk , cmd1), we
just encrypt cmd1 and compare the result with c. Since ElGamal is IND-CPA secure, this simple attack
is not possible with ElGamal.

18

chosen ciphertext attacks) if for any τ -time algorithm A that makes at most q queries to
D, we have that

∣

∣Pr[b = 1 : (pk , sk)← KG(), (m0,m1)← AD(sk ,·)(pk), c← E(pk ,m0), b← AD(sk ,·)(c)]

−Pr[b = 1 : (pk , sk)← KG(), (m0,m1)← AD(sk ,·)(pk), c← E(pk ,m1), b← AD(sk ,·)(c)]
∣

∣ ≤ ε.

Here we quantify only over algorithms A that have the following two properties:
• A outputs (m0,m1) with |m0| = |m1|.
• In the second invocation of A, A only sends queries c′ with c′ 6= c to D(sk , ·).
Visually, the games played by the attacker are the following (for b = 0 and b = 1):

Challenger
(pk , sk)← KG()

Adversary

} many times

arbitrarily interleaved

with other queries

pk

m0,m1 with |m0| = |m1|

c∗ = E(pk ,mb)

c 6= c∗

D(sk , c)

b′

Examples for IND-CCA secure encryption schemes are RSA-OAEP based on the
RSA-assumption using the random oracle heuristic (the random oracle heuristic will be
explained later in this lecture; see Section 11). And the Cramer-Shoup cryptosystem
based on the DDH-assumption and the existence of collision-resistant hash functions
(collision resistant hash functions will be explained later in this lecture, see Section 7).

6.4 Hybrid encryption

One disadvantage of the public key encryption schemes decrypted above is that they
only allow to encrypt short messages (numbers modulo p and N , respectively). Of
course, one could encrypt long messages by just picking very large parameters (such
that p and N are larger than the largest message we wish to encrypt), but this would
be extremely inefficient. A somewhat better variant (which would, however, only give
IND-CPA security even if the original scheme was IND-CCA secure) would be to split
the message into many blocks and to encrypt each block individually.

There is, however, a better (more efficient and secure) solution, namely hybrid encryp-
tion. Hybrid encryption refers to the concept of using a symmetric encryption scheme
(with a fresh key k) to encrypt the message, and a public key encryption scheme to
encrypt the key k. The recipient can then get k by decrypting using his secret key, and
using k he gets the message.

19

Definition 17 (Hybrid encryption) Let (KG1, E1,D1) be a symmetric encryption
scheme. Let (KG2, E2,D2) be a public key encryption scheme. Then we construct the
hybrid encryption scheme (KG , E,D) as follows:

• Key generation: KG() invokes (pk , sk)← KG2() and returns (pk , sk).
• Encryption: E(pk ,m) does the following: Pick k ← KG1(). Compute c1 :=
E1(k,m). Compute c2; = E2(pk , k). Return c := (c1, c2).

• Decryption: D(sk , c) with c = (c1, c2) does the following: Compute k ← D2(sk , c2).
Compute m← D1(k, c1). Return m.

Theorem 6 If (KG1, E1,D1) is (τ1, ε1)-IND-OT-CPA and (KG2, E2,D2) is (τ2, ε2)-
IND-CPA, then (KG , E,D) is (min{τ1 − τE2

− τKG2
, τ2 − τE1

− 2τKG2
}, ε1 + 2ε2)-IND-

CPA.

If (KG1, E1,D1) is (τ1, ε1)-IND-CCA and (KG2, E2,D2) is (τ2, ε2)-IND-CCA, then
(KG , E,D) is (min{τ1− τE2

− τKG2
− qτD1

− qτD2
, τ2− τE1

− 2τKG2
− qτD2

}, q, ε1 +2ε2)-
IND-CCA.

Here τE1
, τKG1

, τD1
, τE2

, τKG2
, τD2

are the time needed for executing
E1,KG1,D1, E2,KG2,D2, respectively.

The conditions on (KG1, E1,D1) and (KG2, E2,D2) can actually be weakened while
still getting IND-CPA or IND-CCA security for (KG , E,D), respectively. In the con-
text of hybrid encryption, one usually calls the public key scheme a key encapsulation
mechanism (KEM) and the symmetric scheme a data encapsulation mechanism (DEM).

7 Hash functions

A hash function H : {0, 1}∗ → {0, 1}n is a function that takes potentially long bitstrings
as inputs and outputs a short (fixed length) bitstring. The intuition is that H(x) is
something like a “summary” of x that identifies x. There are many properties one expects
from a good hash function. In a nutshell, a hash function should behave like a totally
random function (and in particular operate in a totally “chaotic” way on its inputs). One
particular property that a hash function should satisfy is the following:

Definition 18 (Collision resistance) A function H : M → N (where H, M , and N
may depend on the security parameter η) is (τ, ε)-collision-resistant if for any τ -time
algorithm A, we have that

Pr[H(x) = H(x′) ∧ x 6= x′ : (x, x′)← A()] ≤ ε

Typically, M = {0, 1}∗ and N = {0, 1}n in this definition.
This definition guarantees that h := H(x) indeed identifies x: in any execution

involving, the probability that more another x′ with h = H(x′) occurs, is very small
(≤ ε).

20

7.1 Hash functions from compressions functions

Iterated hash. A basic construction for constructing hash functions is the following:
Start with a so-called “compression function” F : {0, 1}n+t → {0, 1}n. Then, to hash a
message m, takes the start of m, compress it using F , add t more bits, compress again,
etc. More formally:

Definition 19 (Iterated hash construction) Let F : {0, 1}n+t → {0, 1}n be a func-
tion (the compression function). Let iv ∈ {0, 1}n be a fixed initialization vector (that
one is part of the definition of HIH , is public, and usually described in the standard).
Let {0, 1}∗t denote the set of all bitstrings whose length is a multiple of t. The iter-
ated hash HIH : {0, 1}∗t → {0, 1}n is defined as follows: Let m = m1‖ . . . ‖mk with
each mi ∈ {0, 1}t. Let h0 := iv , and let hi := F (hi−1‖mi) for i = 1, . . . , k. Then
HIH (m) := hk.

The iterated hash construction is, on its own, only useful for messages of fixed length.
Namely, if F is collision-resistant, we can show that HIH does not have collisions in which
both message have the same length:

Lemma 2 Assume that F is (τ, ε)-collision-resistant. For any τ − O(τIH)-time algo-
rithm A,

Pr[HIH (x) = HIH (x′) ∧ x 6= x′ : (x, x′)← A(1η)] ≤ η.

when restricting A to output messages x, x′ with |x| = |x|′.
Here τIH is the time for evaluating HIH .

However, HIH is not necessarily collision resistant when allowing collisions between
messages of different lengths: Assume we known some x∗ with F (iv‖x∗) = iv (this is,
at least, not excluded by the assumption that F is collision resistant). Then HIH (x) =
HIH (x∗‖x), so x and x∗‖x form a collision.

Merkle-Damgård. To avoid the collisions on messages of different lengths, one has
to extend the iterated hash construction with some additional padding that makes sure
that messages of different length are hashed differently. This can be done by putting the
length of the message into the last block in a suitable way:

Definition 20 (Merkle-Damgård construction) Fix a function F : {0, 1}n+t →
{0, 1}n and an initialization vector iv . Fix an integer l ≤ n that depends on the secu-
rity parameter η (such that 2l is superpolynomial). We then define the Merkle-Damgård
construction HMD : {0, 1}∗ → {0, 1}n as follows: For a message m ∈ {0, 1}∗, let L be
the length of m encoded as an l-bit unsigned integer. Let m′ := m‖1‖0α‖L where α ≥ 0
is the smallest integer such that |m′| is a multiple of t. Then HMD(m) := HIH (m′). (If
|m| ≥ 2l, HMD(x) fails.)

Notice that HMD can hash messages of arbitrary length, not just of length a multiple
of t.

21

Theorem 7 If F is (τ, ε)-collision-resistant, then HMD is (τ − O(τMD), ε)-collision-
resistant.

Here τMD is the time for evaluating HMD .

The Merkle-Damgård construction does not, however, “behave like a random func-
tion”, see the discussion on page 23.

7.2 Constructing compression functions

It remains to answer how to construct a compression function in the first place. Two
examples of such constructions are:

Davies-Meyer. Let E be a block cipher. Define the compression function F as
F (x‖y) := E(x, y)⊕ y.

Miyaguchi-Preneel. Let E be a block cipher. Define the compression function F as
F (x‖y) := E(y, x)⊕x⊕ y. (Assuming the key length and message length of E are equal.
Otherwise the construction needs to be slightly modified.)

Both constructions can be shown secure under the so-called ideal cipher heuristic
which performs the proof under the (false) assumption that E(k, ·) is an independently
randomly chosen permutation for each k.

7.3 Birthday attacks

When attacking the collision resistance of a hash function (or the underlying compression
function F : {0, 1}n+t → {0, 1}n), a natural brute-force attack would be the following:
Sample random pairs (x, y) and try whether F (x) = F (y). On average, one needs 2n−1

tries to find a collision that way.
There is, however, a faster generic attack. Pick approximately 1.1774

√
2n different

values xi. Compute yi := H(xi). Sort the values yi. When sorting, you will find out if
there are two equal values yi = yj. If so, you have found a collision (xi, xj).

The probability of succeeding is about 1
2 when picking 1.1774

√
2n values. Thus this

attack is considerably faster than a brute force attack, but it also uses much more memory.

8 Message authentication codes

A message authentication code (MAC) consists of three algorithms KG , MAC and Verify.
A MAC is used to authenticate a message. If Alice and Bob share a key k ← KG(1η),
then when Alice wants to send a message m, she computes a tag t ← MAC (k,m) and
sends both m and t to Bob. Bob verifies the tag by checking whether Verify(k,m, t) = 1.
(If t was generated normally, this should always succeed.) Intuitively, security of a MAC
requires that the adversary cannot produce a valid (i.e., passing verification) tag t for a
message m that was not authenticated by Alice.

22

In most situations, Verify is defined by: Verify(k,m, t) = 1 iff t = MAC (k,m) = t.
Thus, in the following, we will never specify Verify but just assume that it is thus defined.
And unless mentioned otherwise KG always uniformly randomly picks a key k from a
set K.

Definition 21 (Existential unforgeability) We call a MAC (KG ,MAC ,Verify)
(τ, qM , qV , ε)-existentially unforgeable (under chosen message attacks) (EF-CMA secure)
iff for every τ -time algorithm A that makes at most qM , qV queries to MAC and Verify,
respectively, we have

Pr[Verify(k,m, t) = 1 ∧ m fresh :

k ← KG(), (m, t)← AMAC (k,·),Verify(k,·)()] ≤ ε.

Here “m fresh” means that m has never been sent by A to the MAC (k, ·)-oracle.

A naive construction. A naive construction of a MAC, suggested by the fact that a
hash function should behave like a random function, is defined by MAC (k,m) := H(k‖m)
with keys k from a sufficiently large set K. Unfortunately, this construction is not
secure, at least not if H = HMD is constructed using the Merkle-Damgård construction
(Definition 20). Assume for simplicity that we use a compression function F : {0, 1}2n →
n and keys K = {0, 1}n. Let pad(m) denote the padding 1‖0α‖L that is added in the
Merkle-Damgård construction. Notice that pad (m) can be computed knowing only |m|.

Assume that the adversary intercepts a message m with corresponding tag t =
HMD(k‖m). Then the adversary picks some x of his choice. Then let m∗ :=
m‖pad (k‖m)‖x. By inspecting the Merkle-Damgård construction, one can see that
t∗ := HMD(k‖m∗) can be computed given only t = HMD(k‖m) and |k| and |m|. Thus the
adversary can forge a tag t∗ for a message m∗ that was not authenticated by an honest
sender.

(Notice that this would not have happened if H would behave “like a random func-
tion”. Thus this attack suggests a weakness of the Merkle-Damgård construction. How-
ever, the Merkle-Damgård construction is widely used, so it is preferable to construct
MACs in a way that works with the Merkle-Damgård construction.)

HMAC. A construction of MACs from Hash functions that works with the Merkle-
Damgård construction is the HMAC scheme.

Definition 22 (HMAC) Let F : {0, 1}n+t → n be a compression function, and let
H := HMD be the Merkle-Damgård construction based on F . Let K := {0, 1}t. Let
ipad 6= opad be two fixed n-bit strings.

Then the HMAC MACHMAC is defined as follows: MACHMAC (k,m) := H(k ⊕
opad‖H(k ⊕ ipad‖m)).

23

Notice that although HMAC invoked H twice, the second (outer) invocation is performed
on an input of length t+ n and thus is very fast even for long m.

To state the security of HMAC, we first need the following notion first:

Definition 23 (Pseudo-random function) A function f : K×M → N (where f , K,
M , and N may depend on the security parameter η) is a (ε, q, τ)-pseudo-random function
(PRF) if for all τ -time algorithms A that make at most q queries we have that

∣

∣Pr[b∗ = 1 : k
$← K, b∗ ← Af(k,·)()]

−Pr[b∗ = 1 : π
$← FunM→N , b∗ ← Aπ()]

∣

∣ ≤ ε

Here FunM→N denotes the set of all functions from M to N .

Compare this definition with that of a strong PRP (Definition 7). In fact, almost any
strong PRP (and also any non-strong PRP) is a PRF:

Lemma 3 Let f : M → M be a (τ, q1, q2, ε)-strong PRP. Then f is a (τ, q1, ε −
O(q21/|M |))-PRF.

The security of HMAC is given by the following theorem:

Theorem 8 Assume that F1(x, y) := F (x‖y) and F2(y, x) := F (y‖x) are both PRFs.
Then MACHMAC is EF-CMA secure.

The intuitive reason why HMAC is secure (while the naive approach H(k‖m) was
not) is that in HMAC, we perform some “closing operation” after having hashed the
message. This means that we when we extend the message, this introduces additional
operations in the middle of the computation of MACHMAC (k,m), thus the adversary
cannot compute the new tag by just taking the old tag and applying some additional
operations to it (as was the case with the naive approach).

CBC-MAC. Instead of trying to use a hash function for constructing a MAC (and
relying on the properties on the Merkle-Damgård construction), we can also try and use
a block cipher in a suitable mode of operation to produce a MAC. One example of such a
construction is the CBC-MAC scheme (which is similar to the CBC mode of operation,
Section 5.4).

Definition 24 (CBC-MAC) Let E : {0, 1}n × {0, 1}l → {0, 1}l be a function. Then
MACCBC -MAC is defined as follows: For a key k ∈ {0, 1}n and a message m =
m1 . . . mq ∈ {0, 1}∗l, let c1 := E(k,m1) and ci := E(k, ci−1 ⊕ mi) for i ≥ 2. Let
MACCBC -MAC (k,m) := t := cq.

For fixed length messages, CBC-MAC is a secure MAC:

24

Lemma 4 Assume that 2l is superpolynomial. Assume that E is a PRF. Then for every
polynomial-time algorithm A, there is a negligible function µ such that for all η we have
that

Pr[t = MACCBC -MAC (k,m) = t ∧ m fresh :

k ← KG(1η), (m, t)← AMACCBC -MAC (k,·)(1η)] ≤ µ(η).

Here we restrict A such that all messages m′ sent to the oracles and the message m that
is finally output have the same length.

If we allow messages of different lengths, CBC-MAC is insecure: Assume the
adversary intercepts some one-block message m ∈ {0, 1}l and a corresponding tag
t = MACCBC -MAC (k,m). It is easy to verify that MACCBC -MAC (k,m

′) = t for
m′ := m‖(m ⊕ t). Thus, the adversary has found a valid tag (namely t) for a mes-
sage m′ 6= m. Hence CBC-MAC is not EF-CMA secure.

DMAC. However, there are simple modifications of the CBC-MAC scheme that make
it EF-CMA secure. One is the DMAC scheme. Here, we just apply an additional encryp-
tion at the end of the MAC-computation to make sure that message extension attacks
do not work. (Compare with HMAC!)

Definition 25 (DMAC) Let E : {0, 1}n × {0, 1}l → {0, 1}l be a function. Then
MACDMAC is defined as follows: For a key k = k1k2 ∈ {0, 1}2n and a message
m = m1 . . . mq ∈ {0, 1}∗l, let c1 := E(k1,m1) and ci := E(k1, ci−1 ⊕ mi) for i ≥ 2.
Let MACCBC -MAC (k,m) := t := E(k2, cq).

Notice that DMAC uses a key of twice the length because the final encryption uses
another key.

Theorem 9 If 2l is superpolynomial and E is a PRF, then MACDMAC is EF-CMA
secure.

A direct construction. We can also directly combine a hash function and a PRF to
get a MAC due to the following two lemmas:

Lemma 5 If E : K ×M →M is a PRF, then E is an EF-CMA secure MAC.

Notice that if E is, e.g., a block cipher, then E is not a very useful MAC because M
consists only of one block messages.

Lemma 6 If MAC 1 : K × M → N is a PRF, and if H : {0, 1}∗ → M is collision
resistant, then MAC 2 : K ×{0, 1}∗ →M , MAC 2(k,m) := MAC 1(k,H(m)) is EF-CMA
secure.

Thus the construction MAC (k,m) := E(k,H(m)) gives us a EF-CMA secure MAC if E
is a PRF and H collision resistant.

25

9 Cryptanalysis

Cryptanalysis is the science of how to break ciphers. More precisely, it is the science of
recovering messages without access to the secret (e.g., the key).

Besides the attack scenarios described on Section 2 (ciphertext only, known plaintext,
chosen ciphertext), there are the following attack scenarios:

• Adaptive chosen-ciphertext: We are allowed to chose the ciphertexts depending on
decryptions we saw in earlier steps.

• Related key: Several messages are encrypted with different but not independent
keys. (E.g., the first half of the key is the same for two encryptions.)

• Side channel: Use additional leakage of information to break a cryptosystem (e.g.,
the power consumption, the response time, etc. of the encryption/decryption op-
eration).

Why study cryptanalysis? There are several reasons for studying cryptanalysis.
First, cryptanalysis can help to design better cryptosystems: By studying weaknesses of
ciphers, we find out what we have to do better. Second, cryptanalysis is a science that is
relevant in war: For example, breaking the Enigma in World War II had a major impact
on the war outcome. Third, breaking ciphers can be important for catching criminals or
terrorists.

Lessons learned from breaking Enigma. The Enigma will never encrypt a letter
to itself. This property means that we will learn something about the plaintext by
looking at the ciphertext. Also, we cannot expect that the attacker does not know what
algorithm we use: The attacker might (through stealth or force) have stolen our algorithm
/ implementation. Also, assuming that the adversary has to do a ciphertext only attack
is not a good idea: There is usually at least some side information about the message,
e.g., because it is a weather report, because we use fixed message format, etc.

Confusion and diffusion. See page 11.

Cache timing attacks. A cache timing attack is a side-channel attack in which the
attacker’s process run on the same machine as the honest user’s process. (Think of
a multi-user system.) We consider a very simplified view on AES: In a typical AES
implementation, the following happens: In the first round, some part m of the message
is XORed with some part k of the key. Then, some function F is applied to m⊕ k. For
efficiency reasons, F is implemented as a lookup-table. I.e., the user will lookup F [m⊕k]
in a table F .

Now consider the following attack: The attacker fills the cache with his own data (by
running some loop accessing a lot of memory locations). Then the user encrypts some
data. This will access F [m ⊕ k]. Thus, the cache location corresponding to F [m ⊕ k]

26

will have been accessed. (Actually, a lot of locations will have been accessed, since the
operation F is applied to many parts of message and key, but we ignore this complication
in this highly simplified exposition.) After the user encrypted, the adversary accesses his
own data again. By measuring response times, he finds out which cache positions were
overwritten by the user’s algorithm, hence he knows m⊕k. Assuming a known plaintext
attack, the attack can compute k from this, hence he obtained a part k of the key.

Real-life cache timing attacks are much more involved because measurements about
which cache positions are overwritten are very noisy, and not just a single cache position
is overwritten, so we do not know which cache position corresponds to which value in
the encryption algorithm.

9.1 Linear cryptanalysis

We will now illustrate the concept of linear cryptanalysis on a toy block cipher. The op-
eration of the block cipher is depicted in Figure 1. We assume that all S-boxes implement
the same function, described in Figure 2.

In the description of DES (Section 5.1) we have seen one common structure of block
ciphers, the Feistel network. Here we see another structure, the substitution-permutation
network. In a substitution-permutation network, we alternatingly permute the bits, apply
substitutions to them, and mix in the key (i.e., XOR parts of the key to the bits). We do
this for a number of rounds (usually, more rounds mean more security but less efficiency).
A well-known example of a cipher using a substitution-permutation network is AES.

Looking at the structure of the toy cipher, the following question arises: Why do we
have to mix in the key also after the last round? The answer is simple: Since each of the
S-boxes is invertible, without the last mix-key-layer, we could just invert the S-box, and
would effectively have lost a whole round.

Another question: In the toy cipher, we have that the key length is much bigger than
the block length because we need some part of the key for each round. Is this necessary?
The answer is no, we can use a smaller key by using a key schedule (as in the case of
DES) that produces round keys out of a key that is shorter than the total length of the
round keys.

In the following, we will often use the following lemma:

Lemma 7 (Piling-up lemma) Let X1, . . . ,Xn be independent binary random variables
with Pr[Xi = 0] = 1

2 + εi for all i. Then Pr[X1 ⊕ . . .⊕Xn = 0] = 1
2 + 2n−1

∏

i εi.

Consider the substitution given in Figure 2. Assume that we feed it with input
X1 . . . X4 ∈ {0, 1}4. Then we get some output Y1 . . . Y4. We can now, for example,
compute the probability that X2 ⊕ X3 ⊕ Y1 ⊕ Y3 ⊕ Y4 = 0 by counting for how many
values of X1X2X3X4 we have X2 ⊕X3 ⊕ Y1 ⊕ Y3 ⊕ Y4 = 0. We get

Pr[X2 ⊕X3 ⊕ Y1 ⊕ Y3 ⊕ Y4 = 0] =
12

16
=

1

2
+

1

4
. (1)

In Figure 3, we have summarized the values of all these probabilities. This table
uses the following compact encoding: If we are interested in the XOR of some input

27

Figure 1: Toy cipher with block length 16 bit and key length 80 bits

28

input 0 1 2 3 4 5 6 7 8 9 A B C D E F

output E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

Figure 2: The substitution implemented by the S-boxes

Figure 3: Linear approximation table for the substitution in Figure 2

29

bits Xi and some output bits Yi, we first write down a binary number which tells input
bits we are interested in. E.g. for X1,X3, we write 1010. This number we convert to
hexadecimal, giving A, this is called the input sum. We do the same for the Yi, giving
the output sum. Then we look up in the table the corresponding value x. Then the
probability that the XOR of the Xi and Yi we are interested in is 1

2 + x
16 .

For example, we can find (1) in this table: X2 ⊕ X3 is encoded as 0110 which is
6 in hex. And Y1 ⊕ Y3 ⊕ Y4 is encoded as 1011 which is B in hex. In the table, we
find that for input sum 6 and output sum B, we have the entry +4, which means
Pr[X2 ⊕X3 ⊕ Y1 ⊕ Y3 ⊕ Y4 = 0] = 1

2 +
+4
16 which is what (1) states.

Using the statistics from the linear approximation table, we can now find what is
called a linear trail.

In the following, we name the bits that occur in an encryption using the toy cipher
as follows: The i-th plaintext bit is called Pi. The i-th bit of the r-th round key is kr,i.
The i-th bit of the inputs to the S-boxes in round r is Ur,i, the output Vr,i.

We will now try to determine the bias of the XOR of some of the input bits, the key
bits, and the inputs of the S-boxes in the last round. That is, for some suitable sets Ik,
IP , IV , we wish to know ε such that

Pr[
⊕

(r,i)∈Ik

kr,i ⊕
⊕

i∈IP

Pi ⊕
⊕

i∈IV

V4,i = 0] =
1

2
+ ε.

We are interested in sets Ik, IP , IV such that ε becomes as big as possible.
Assume we know such an ε. We can now perform a known plaintext attack on the

toy cipher as follows:

• Guess the value for the last round key. I.e., guess values k5,i for some i.

• Using those values k5,i and a lot of ciphertexts C(j), we can compute the values

V
(j)
4,i for all i ∈ IV .

• Given also the corresponding plaintexts P (j), we can compute
⊕

i∈IP
P

(j)
i ⊕

⊕

i∈IV
V

(j)
4,i for many values j. Assuming we have guessed the values k5,i correctly,

we will get a bias of either approximately ε (if
⊕

(r,i)∈Ik
kr,i = 0) or approximately

−ε (if
⊕

(r,i)∈Ik
kr,i = 1).

Thus, if we guessed k5,i correctly, we expect to have a bias ±ε. For wrong k5,i, we
expect that the bias will be much smaller (because we have chosen Ik, IP , IV such that
ε is big). Thus, we can identify a correct guess of k5,i by making a suitable statistics
on plaintext/ciphertext pairs (P (j), C(j)). This will leak some of the key bits which is
already an attack. By performing this attack for more than one choice of Ik, IP , IV , we
can learn even more bits.

Note that for computing the statistics to a sufficient precision, we need about 1/ε2

plaintext/ciphertext pairs. And the time-complexity of the attack is in the order of 2m/ε2

where m is the number of keybits k5,i we have to guess.

30

Figure 4: Example linear trail of the toy cipher

31

But how to we compute the bias ε for given sets Ik, IP , IV ?
First, we have to choose some bits in each round of the cipher. These are the bits upon

which we wish to base our statistics. In Figure 4, we have chosen the input bits P5, P7, P8.
From these, the bits U1,5, U1,7, U1,8 depend directly. Then we choose the output bit V1,6.
Upon V1,6, the bit U2,6 depends. The bit U2,6 goes into the S-box S22. Of that S-box,
we choose the output bits V2,6 and V2,8. Upon these, the input bits U3,6 and U3,14 will
depend. These go into S-boxes S32 and S34. We pick outputs V3,6, V3,8, V3,14, V3,16. And
the inputs U4,6, U4,14, U4,8, U4,16 depend directly on these.

From the linear approximation table, we then expect the following dependencies be-
tween the inputs and outputs of the different S-boxes:

S12 : U1,5 ⊕ U1,7 ⊕ U1,8 ⊕ V1,6 = 0 with prob.
1

2
+

1

4

S22 : U2,6 ⊕ V2,6 ⊕ V2,8 = 0 with prob.
1

2
− 1

4

S32 : U3,6 ⊕ V3,6 ⊕ V3,8 = 0 with prob.
1

2
− 1

4

S34 : U3,14 ⊕ V3,16 ⊕ V3,16 = 0 with prob.
1

2
− 1

4

Notice that each Ur,i is of the form kr,i⊕Vr−1,j for some (known) j. (Or k1,i⊕Pi for
r = 1.) Using these equalities, we get:

S12 : B1 := P5 ⊕ k1,5 ⊕ P7 ⊕ k1,7 ⊕ P8 ⊕ k1,8 ⊕ V1,6 = 0 with prob.
1

2
+

1

4

S22 : B2 := V1,6 ⊕ k2,6 ⊕ V2,6 ⊕ V2,8 = 0 with prob.
1

2
− 1

4

S32 : B3 := V2,6 ⊕ k3,6 ⊕ V3,6 ⊕ V3,8 = 0 with prob.
1

2
− 1

4

S34 : B4 := V2,14 ⊕ k3,14 ⊕ V3,16 ⊕ V3,16 = 0 with prob.
1

2
− 1

4

Using the piling up lemma, and the (heuristic and not really true) assumption that
everything is independent, we get Pr[B1 ⊕B2 ⊕B3 ⊕B4 = 0] = 1

2 − 1
32 .

And since

B1⊕B2⊕B3⊕B4 = V3,6⊕V3,8⊕V3,14⊕V3,16⊕P5⊕P7⊕P8⊕k1,5⊕k1,7⊕k1,8⊕k2,6⊕k3,6⊕k3,14
we have found an equation of the form of (1). This allows to perform the attack.

Further reading. A tutorial on cryptanalysis (covering the above and differential
cryptanalysis) [Hey].

10 One-way functions

One of the weakest assumptions in cryptography is the existence of so-called one-way
functions. Roughly, a one-way function is a function that is easy to compute, but hard
to invert. (I.e., given an image, it is hard to find any preimage of that image.)

32

Formally, one-way functions are defined as follows:

Definition 26 (One-way function) A function f : M → N (where f,M,N may de-
pend on the security paramter η) is one-way iff it can be computed in deterministic
polynomial-time and for all polynomial-time algorithms A, there exists a negligible func-
tion µ such that for all η, we have:

Pr[f(x) = f(x′) : x
$←M,y ← f(x), x′ ← A(1η , y)] ≤ µ(η)

Visually, the game played by the attacker is the following:

Challenger

x
$←M

y ← f(x)

Adversary

y

x′

Although a one-way function seems to be very weak and rather useless, using only
one-way functions, quite a lot of cryptographic primitives can be constructed:

Theorem 10 Assume that one-way functions exist. Then there are:

(a) Pseudo-random generators

(b) Pseudo-random functions

(c) Strong pseudo-random permutations

(d) Symmetric encryption schemes (IND-CCA secure)

(e) MACs (EF-CMA secure)

(a) is shown using a generalization of the Blum-Blum-Shub construction (??). (b)
by building pseudo-random functions from pseudo-random generators using a tree-based
construction. (c) by using a 4-round Feistel network with a PRF as round function. (d)
by using a strong PRP as a block cipher in a suitable mode of operation. (e) by using a
PRF as a MAC.

Also, we can construct signature schemes from one-way functions, see Section 12.1.
What is not known is whether it is possible to construct collision-resistant hash

functions or public-key encryption schemes from one-way functions.

33

11 Random Oracle Model

In many cases, cryptosystems that use hash functions are difficult or impossible to prove
based only on simple assumptions about the hash function (such as collision-resistance).
Instead, one would like to use the fact that a typical hash function behaves very much
like a totally random function.

This leads to the following analysis technique: When analyzing a cryptosystem that
uses a hash function H : M → N , one models the hash function as a uniformly randomly
chosen function out of the space of all functions from M to N . Such a uniformly randomly
chosen function is called a random oracle.

More precisely, when analyzing whether a scheme X (that uses a hash function H :
M → N) satisfies a given security definition S, one does the following: First, one writes
X as a collection of algorithms that use an oracle H (instead of directly using the hash
function), and one changes the security definition S such that at the beginning of the

execution, H is chosen randomly (H
$← FunM→N), and then one changes S further by

giving oracle access to H to all algorithms (in particular the adversary).
To illustrate this, consider the definition of one-way functions. If we build a one-way

function f using a hash function (e.g., f(x) := H(x) ⊕ x), we would represent f as an
algorithm that expects an oracle H and computes fH(x) := H(x) ⊕ x. The security of
f would then be expressed by the following definition.

Definition 27 (One-way function (in the random-oracle model)) A function
fH : M → N using an oracle H : M ′ → N ′ (where f,M,N,M ′, N ′ may depend on the
security paramter η) is one-way iff it can be computed in deterministic polynomial-time
(given oracle access to H) and for all polynomial-time oracle algorithms A, there exists
a negligible function µ such that for all η, we have:

Pr[fH(x) = fH(x′) : H
$← FunM ′→N ′ , x

$←M,y ← f(x), x′ ← AH(1η , y)] ≤ µ(η)

See also Definition 30 in the next section for a more complex example.
Schemes in the random oracle model are usually much simpler to analyze than schemes

using real hash functions. However, random oracles do not exist in real life. So, an
analysis of some cryptosystem in the random-oracle model has, strictly speaking, no
impact on any real-life scheme.

One does, however, commonly use the following heuristic when analyzing schemes in
the random-oracle model:

Random oracle heuristic. In order to “prove” the security of a scheme X
that uses a hash function H, first analyze X in the random oracle model (i.e.,
replacing H by a random oracle). Then, if X is secure in the random oracle
model, conclude that X is secure using a suitably good real-life hash function
(such as, e.g., SHA-256).8

8A better variant of the random oracle heuristic would actually be the following: If H is implemented
as, e.g., Merkle-Damgård with a compression function F , model F as a random oracle (and treat H as
a Merkle-Damgård construction based on this oracle F). However, this is often not done.

34

Note that the random oracle model itself is a well-defined, mathematically rigorous
model (it just describes something that does not exist, but that does not make it infor-
mal), the random oracle heuristic is not fully well-defined, and it is more of a guideline
for heuristically analyzing the security of protocols.

Unsoundness of the random oracle heuristic. Moreover, the random oracle
heuristic can, in general, lead to wrong results. Consider the following protocol: Let

H : {0, 1}∗ → {0, 1}η be a hash function. Bob picks a secret s
$← {0, 1}η . Then Bob

expects the description of a Boolean circuit C from the adversary. Then Bob picks

x
$← {0, 1}η and checks whether C(x) = H(x). If so, Bob sends s to the adversary.
In the random oracle model, this protocol is secure (i.e., the adversary cannot guess

s. This is – roughly – due to the fact that a random function H
$← Fun{0,1}∗→{0,1}η will

not have a short description, and thus C will not describe H (or even be close to it).
Thus C(x) = H(x) only with negligible probability.

If H is a hash function, however, there is a circuit CH that describes this hash
function. The adversary just sends C := CH and receives s from Bob. Thus, the scheme
is insecure for any hash function, even though it is secure in the random oracle model!

Relevance of the random oracle heuristic. Even though the random oracle heuris-
tic is, in general, unsound, it is of practical importance nonetheless.

• So far, only very contrived examples of cryptosystems have been found where the
random oracle heuristic fails.

• Schemes in the random oracle model are typically simpler, more efficient, and easier
to prove that schemes in the standard model (i.e., the model without random-
oracle).

• It is better to use a well-known and well-tested heuristic in the security proof than
not to prove security at all. Since a too inefficient scheme will typically not be
adopted on a wide basis, it may be preferable to propose a scheme in the random
oracle model than to propose a considerably more inefficient scheme (in the latter
case, a totally unproven scheme might be adopted instead).

Nevertheless, the use of the random oracle heuristic is a matter of taste and opinion.

Lazy sampling. An important technique when analyzing protocols in the random
oracle model uses the following fact:

Lemma 8 (Lazy sampling) Fix M,N . Let Hlazy denote the following (stateful) algo-
rithm: Hlazy maintains a table each m ∈M to a value hm ∈ N ∪ {⊥}; initially hm = ⊥
for all m. When invoked as Hlazy(m) for m ∈M , Hlazy first checks whether hm 6= ⊥. In

this case, it returns hm. Otherwise, it chooses hm
$← N and returns hm.

35

Then Hlazy is indistinguishable from a random H
$← FunM→N . More formally: For

any oracle algorithm A (not necessarily polynomial-time) and all η, we have

Pr[b∗ = 1 : H
$← FunM→N , b∗ ← AH(1η)] = Pr[b∗ = 1 : b∗ ← AHlazy (1η)].

This fact is usually used in a security proof by first replacing the random oracle by Hlazy ,
and then continuing the proof in that setting. The advantage of this approach is that
when using Hlazy , it is typically easier to track the dependencies of the values H(m), and
to make slight changes to the H(m) in subsequent proof steps.

12 Signature schemes

A signature scheme consists of three algorithms KG , Sign and Verify. A signature is
used to authenticate messages. To be able to authenticated messages, Alice generates a
key pair (pk , sk) ← KG(1η) and publicizes the public key pk (but keeps the secret key
sk secret).9 Then, when Alice wants to send a message m, she computes a signature
σ ← Sign(sk ,m) and sends both m and σ to Bob. Bob verifies the signature by checking
whether Verify(pk ,m, σ) = 1. (If σ was generated normally, this should always succeed.)
Intuitively, security of a signature scheme requires that the adversary cannot produce a
valid (i.e., passing verification) signature σ for a message m that was not signed by Alice.

That is, signatures schemes are the public-key variant of MACs. Accordingly, the se-
curity definition for signature schemes closely resembles the one for MACs (Definition 21):

Definition 28 (Existential unforgeability) We call a signature scheme
(KG ,Sign ,Verify) (τ, q, ε)-existentially unforgeable (under chosen message attacks)
(EF-CMA secure) iff for every τ -time algorithm A, that makes at most q queries, we
have that

Pr[Verify(pk ,m, σ) = 1 ∧ m fresh :

(pk , sk)← KG(), (m,σ) ← ASign(sk ,·)(pk)] ≤ ε.

Here “m fresh” means that m has never been sent by A to the Sign(sk , ·)-oracle.

Notice that A now gets access to the public key pk (since that one is not kept secret).
Furthermore, in contrast to Definition 21, the adversary A does not get access to a
Verify(pk , ·)-oracle: since A knows pk , he can simulate that oracle himself.

Naive construction of signature schemes – a warning. One sometimes sees de-
scriptions of the concept of signatures that suggest the following: Take a public-key
encryption scheme (KG ,Enc,Dec) and use it as a signature scheme as follows: Produce
keys by (pk , sk) ← KG(1η). To sign a message m, run σ ← Dec(sk ,m). To verify a
signature σ on m, check whether m = Enc(pk ,m). This approach is a bad idea due to
the following reasons:

9Publicizing pk could, analogously to the case with encryption, be done using a PKI.

36

• In general, it does not even work: Since ciphertexts in public-key encryption
schemes usually have some structure (e.g., an ElGamal ciphertext is a pair of
integers), many messages (e.g., those that are not pairs) will simply be rejected
by Dec. Even if we encode messages to have the right structure, there may be
some internal checksums or similar inside a ciphertext that make Dec fail whenever
the ciphertext is not produced by encrypting a message. (Most IND-CCA secure
public-key encryption schemes have such “checksums”.)

• If the encryption scheme is randomized, Enc will produce a different ciphertext
each time it is invoked. Thus Enc(pk ,Dec(sk ,m)) 6= m most of the time.

• And even if the above problems are resolved (e.g., textbook RSA does not have
the two problems above), the security of the resulting scheme is still doubtful. An
encryption scheme is not designed to be a signature scheme when reversed, and the
security of the encryption scheme therefore implies in no way security of the result
signature scheme.

I presume that the reason for the persistence of this approach is that it can be done (with
very weak security!) using RSA which was the first known public-key cryptosystem.

12.1 Signatures from one-way functions.

We now describe how to construct a signature scheme based on very weak assumptions.
We will only need one-way functions and collision-resistant hash functions. (And below
we mention how to do it only with one-way functions.)

One-time signatures. The first step is to construct so-called one-time signatures.
These are signature schemes that are secure only when the honest signer produces at
most one signature. More precisely, a one-time signature scheme should satisfy the
following security definition:

Definition 29 (Existential one-time unforgeability) We call a signature scheme
(KG ,Sign ,Verify) existentially one-time unforgeable (under chosen message attacks)
(EF-OT-CMA secure) iff for every polynomial-time algorithm A that calls its oracle
at most once, there is a negligible function µ such that for all η we have that

Pr[Verify(pk ,m, σ) = 1 ∧ m fresh :

(pk , sk)← KG(1η), (m,σ)← ASign(sk ,·)(1η, pk)] ≤ µ(η).

Here “m fresh” means that m has never been sent by A to the Sign(sk , ·)-oracle.

We construct the following scheme:

Construction 2 (Lamport’s one-time signatures) Let f be a one-way function
from X → Y . We define a signature scheme (KGLamport ,SignLamport ,VerifyLamport)
with message space {0, 1}n as follows:

37

• Key generation: KGLamport () picks values xji
$← Y for i = 1, . . . , n, j = 0, 1. Let

yji := f(xji). Let sk := (x01, . . . , x
0
n, x

1
1, . . . , x

1
n) and pk := (y01 , . . . , y

0
n, y

1
1 , . . . , y

1
n).

Return (pk , sk).

• Signing: SignLamport (sk ,m) with sk = (x01, . . . , x
0
n, x

1
1, . . . , x

1
n) and m ∈ {0, 1}n

returns σ := (xm1

1 , . . . , xmn
n).

• Verification: VerifyLamport (pk ,m, σ) with pk = (y01 , . . . , y
0
n, y

1
1 , . . . , y

1
n) and m ∈

{0, 1}n and σ = (σ1, . . . , σn) checks whether ymi
i = f(σi) for i = 1, . . . , n. If so, it

returns 1.

Theorem 11 Let f be a one-way function. Then
(KGLamport ,SignLamport ,VerifyLamport) is EF-OT-CMA secure.

Notice that the security of the scheme breaks down completely if we produce more
than one signature with a given signing key.

Lamport’s scheme only allows us to sign messages of a fixed length n. If we wish to
sign longer messages, we can use the following construction:

Construction 3 Let (KG ,Sign,Verify) be a signature scheme with message space
M and let H : {0, 1}∗ → M be a collision-resistant hash function. De-
fine (KGH ,SignH ,VerifyH) as follows: KGH(1η) := KG(1η). SignH(sk ,m) :=
Sign(sk ,H(m)). VerifyH(pk ,m) := Verify(pk ,H(m)).

Lemma 9 If (KG ,Sign,Verify) is EF-CMA secure (or EF-OT-CMA secure), then
(KGH ,SignH ,VerifyH) is also EF-CMA secure (or EF-OT-CMA secure, respectively).

Tree-based construction.

Construction 4 (Tree-based signatures) Let (KG1,Sign1,Verify1) be a one-time
signature scheme where Sign1 is deterministic. Assume that KG1 uses at most ℓ random
bits per invocation. Let F : K × {0, 1}∗ → {0, 1}ℓ be a PRF.

We construct (KG tree ,Sign tree ,Verify tree) with message space {0, 1}n as follows:

• Key generation: KG tree() picks k
$← K and (pkλ, skλ)← KG1(;F (k, λ)).)Here

λ stands for the empty word. The notation X(; b) denotes an invocation of the
algorithm X using b as its randomness.) KG tree returns (pk , sk) with pk := pkλ
and sk := (k, skλ).

• Signing: Signtree(sk ,m) with sk = (k, skλ) does the following: For i = 0, . . . , n−1,
let

(pkm|i0
, skm|i0)← KG1(;F (k,m|i0))

(pkm|i1
, skm|i1)← KG1(;F (k,m|i1))

σi ← Sign1(skm|i
, (pkm|i0

, pkm|i1
)).

38

Here m|i denotes the first i-bits of m.

Let
σend ← Sign1(skm,m).

Return σ := (pkm|00
, pkm|01

, . . . , pkm|n−10
, pkm|n−11

, σ0, . . . , σn−1, σend).

• Verification: Verifytree(pk ,m, σ) with pk = pkλ and σ =
(pkm|00

, pkm|01
, . . . , pkm|n−10

, pkm|n−11
, σ0, . . . , σn−1, σend) does the following:

For i = 0, . . . , n − 1, check whether Verify1(pkm|i
, (pkm|i0

, pkm|i1
), σi) = 1. Check

whether Verify1(pkm,m, σend) = 1. If all checks succeed, return 1.

Notice that in this construction, any skx is used several times, but always to sign the
same message. And in each invocation, it uses the same randomness, so effectively skx
is used only once.

Theorem 12 If (KG1,Sign1,Verify1) is EF-OT-CMA secure, then
(KG tree ,Sign tree ,Verify tree) is EF-CMA secure.

Plugging things together. By Theorem 11 we get a one-time signature scheme (EF-
CMA secure) which can be extended to allow signing of arbitrary messages (not just
length η) by Lemma 9. Based on that scheme, by Theorem 12, we get a signature scheme
which is EF-CMA secure (and whose message space can be extended using Lemma 9).
These constructions need one-way functions, PRFs, and collision-resistant hash functions.
By Theorem 10(b), PRFs can in turn be constructed from one-way functions. Thus we
get:

Corollary 1 If one-way functions and collision-resistant hash functions exist, then there
is an EF-CMA secure signature scheme (with message space {0, 1}∗).

Note: Instead of the collision-resistant hash function, one can also use a so-called
universal one-way hash function (UOWHF). (This requires a slight change of the con-
struction.) A UOWHF can be constructed from one-way functions. We omit the details
and only mention the final result:

Theorem 13 If one-way functions exist, then there is an EF-CMA secure signature
scheme (with message space {0, 1}∗).

Note that this construction is extremely inefficient (especially if we construct
UOWHFs from OWFs) and thus unusable in practice.

12.2 Full domain hash

We now describe another construction of a signature scheme, the full domain hash (FDH)
construction. (We describe RSA-FDH; in general, FDH can based on other assumption
than RSA, too.)

39

Construction 5 Let H : {0, 1}∗ → {0, 1}3η be a hash function (or the random oracle,
respectively).10

The RSA-full domain hash scheme (RSA-FDH) (KGFDH ,SignFDH ,VerifyFDH) is
defined as follows:

• Key generation: KGFDH (1η) picks two η-bit primes p, q, computes N := p, q,
picks uniform e, d with ed ≡ 1 mod ϕ(N), and sets sk := (N, d) and pk := (N, e).
(This is the same key generation as for textbook RSA.)

• Signing: SignFDH (sk ,m) with sk = (N, d) returns H(m)d mod N .

• Verification: VerifyFDH (pk ,m, σ) with pk = (N, e) returns 1 iff H(m) ≡ σe mod
N .

Since only have a proof of RSA-FDH in the random oracle model, we restate the
definition of EF-CMA security in the random oracle model:

Definition 30 (Existential unforgeability (in the random oracle model))
Given sets M,N (domain and range of the random oracle), we call a signature scheme
(KG ,Sign ,Verify) existentially unforgeable (under chosen message attacks) in the
random oracle model (EF-CMA secure in the ROM) iff for every polynomial-time
algorithm A, there is a negligible function µ such that for all η we have that

Pr[VerifyH(pk ,m, σ) = 1 ∧ m fresh : H
$← FunM→N ,

(pk , sk)← KGH(1η), (m,σ)← AH,SignH(sk ,·)(1η, pk)] ≤ µ(η).

Here “m fresh” means that m has never been sent by A to the SignH(sk , ·)-oracle.

We then have:

Theorem 14 If the RSA assumption holds, (SignFDH ,VerifyFDH) is EF-CMA secure
in the random oracle model.

13 Symbolic cryptography

To ensure trust in a cryptographic protocol, the security of the protocol is typically
proven. However, proving the security of a protocol by hand has two drawbacks:

• Humans tend to make accidental mistakes. Cryptographic proofs of complex sys-
tems are usually quite long and contain a lot of case distinctions etc. Thus, one
cannot expect that a hand-written security proof of a complex system will be cor-
rect.

10We use the range {0, 1}3η such that H(m) mod N will be almost uniform for an N that is the
produce of two η-bit primes.

40

• Real-life protocols may be so complex as to defy manual security analysis altogether.
Since the complexity of a proof increases with the complexity of the system, some
systems may need proofs in which humans simply lose track.

In light of these problems, we would like automated verification in which a computer
finds the security proof, since a computer will not make accidental mistakes. (To deal
with the first problem only, computer-aided verification is also an option: here, the proof
is (partially) constructed by a human, but rigorously checked by the computer.)

Unfortunately, the reduction proofs that are typically used in cryptography are too
difficult for the computer: they usually require clever insights that the computer does
not have. To be able to automate the analysis of protocols, a heuristic is therefore
used: Instead of modeling operations like encryption and decryption as the application
of probabilistic algorithms on bitstrings, we simplify the world and model them as a
operations on abstract terms. E.g., instead of representing an encryption as a bitstring
(e.g., 010010110), we directly represent it as a term (e.g., enc(pk ,m)). Although this
does not represent reality, it is a useful idealization. (We discuss pros and cons of this
approach below.)

The modeling of cryptography in which messages are represented as bitstrings (and
not terms) is usually called the computational model .

Advantages and disadvantages The big advantage of modeling cryptography sym-
bolically is that in the symbolic model automated verification is much simpler. At the
current state of the art, many protocols can only be analyzed in the symbolic model – in
these cases, it is better to perform verification in the symbolic model than no verification
at all. (This motivation is similar to that of the random oracle model, see Section 11.)

One should, however, use the symbolic model with care. To be safe, one needs
to identify everything the adversary can do and add it to the deduction rules. If one
overlooks something, an attack is overlooked. (Note: There is even no suitable formal
definition of “everything the adversary can do”, so it is very difficult to tell when the list of
deduction rules is sufficiently complete.) While for encryption, the list of deduction rules
seems straightforward, for other cryptographic schemes (e.g., schemes with homomorphic
properties), it is far from clear which rules to use.

In some specific cases, however, it can be proven that the symbolic model is sound.
Such results are called computational soundness results.11

13.1 Analysis of the Needham-Schröder-Lowe protocol

To illustrate how a symbolic model is used, we will investigate the following two protocols
for mutual authentication.

Needham-Schröder protocol. In this protocol, there are two roles, initiator and
responder. We assume that each party X has a secret key skX and that everyone knows

11Note: this notion of computational soundness has nothing to do with the notion of computational
soundness introduced in Section 14. They are just homonymes.

41

the corresponding public key pkX . When a party A is running as the initiator (with
argument B – indicating the intended partner), and B is running as the responder (with
argument A), the following steps are executed:

• A picks a random value R1 and sends enc(pkB , (A,R1)) to B.

• B decrypts, picks a random R2, and then sends enc(pkA, (R1, R2)) to A.

• A decrypts, and sends enc(pkB, R2) to B.

The intended property of this protocol is mutual authentication, that is, A will not
believe to be talking to B unless B also intended to talk to A and vice verse. Somewhat
more formally:

Definition 31 (Mutual authentication – informal) Whenever some A successfully
finishes12 an execution as initiator with argument B, then the party B has started an
execution as responder with argument A. And vice versa (with initiator and responder
switched).

The Needham-Schröder protocol does not satisfy this property: Assume that A runs
as initiator with argument C, that B runs as responder with argument A, and that C is
corrupted (i.e., the adversary) and communicates with both A and B. That is, A believes
correctly that she is talking to C, but B believes incorrectly that he is talking to A. C
performs the following steps:

• When getting enc(pkC , (A,R1)) from A, it decrypts and sends enc(pkB , (A,R1))
to B.

• When B responds with enc(pkA, (R1, R2)), C forwards this message to A.

• When A responds with enc(pkC , R2), C decrypts and sends enc(pkB, R2) to B.

• Then B successfully finishes the execution.

Since B successfully finished an execution with argument A, but A never started an
execution with argument B, this shows that the Needham-Schröder protocol does not
satisfy mutual authentication.

The following protocol is supposed to fix this problem:

Needham-Schröder-Lowe protocol (NSL). The situation is the same as in the
Needham-Schröder protocol, but the following steps are executed:

• A picks a random value R1 and sends enc(pkB , (A,R1)) to B.

• B decrypts, picks a random R2, and then sends enc(pkA, (R1, R2, B)) to A.

• A decrypts, and sends enc(pkB, R2) to B.

Notice that the only difference to the Needham-Schröder protocol is that the message
enc(pkA, (R1, R2, B)) additionally contains the name B.

12That is, all the messages it receives are as it expects them from the protocol description.

42

Symbolic modeling of NSL. We would like to make sure that NSL is not also sus-
ceptible to attack similar to the above. For this, we will analyze the security in the
symbolic model. The first step is to write down how the protocol and the capabilities of
the adversary are modeled.

For illustration purposes, we consider a special case only, corresponding to the attack
on the Needham-Schröder protocol described above. Namely, we consider an execution
in which A runs as initiator with argument C, and B runs as responder with argument
A. In this case, to check security, it is sufficient to check whether B successfully finishes.
(A full-fledged analysis would have to consider arbitrary many executions of arbitrary
parties in arbitrary rules with arbitrary arguments.)

We start by modeling the capabilities of the adversary:

⊢ enc(pkC , x)

⊢ x
Dec

⊢ x P ∈ {A,B,C}
⊢ enc(pkP , x)

Enc

⊢ A ⊢ B ⊢ C
Name

⊢ x ⊢ y

⊢ (x, y)
Pair

⊢ (x, y)

⊢ x ⊢ y
Split

i ∈ N
⊢ R̂i

Rand

These rules are read as follows: The expression ⊢ t stands for “the adversary knows (or:
can know) the term t”. If, for some assignment for the variables x and y, the preconditions
in the upper half of the rule are satisfied, then the conclusions in the lower half are also
satisfied. E.g., if ⊢ enc(pkC , (A,R1)), then the preconditions of the rule Dec are satisfied
(with x := (A,R1)), and hence ⊢ (A,R1) holds.

Notice that there is no rule for ⊢ R1 or ⊢ R2. This models the fact that the adversary
cannot guess these random values unless he first gets some term that contains them.
(Keep in mind, though, that R1, R2 are not modeled as random values, but as unique
symbols.)

Furthermore, we need to model what the adversary C can learn from interacting
with the protocol. For example, A sends enc(pkC , (A,R1)), so we have the rule Msg1

below. Furthermore, if C knows a term of the form enc(pkA, (R1, x, C)) for any x,13

he can send this term to A, who will answer with enc(pkC , x). This leads to the rule
Msg3. And finally, if C knows enc(pkB , (A, y)), then he can send this to B and gets
enc(pkA, (y,R2, B)). Hence rule Msg2.

13In our analysis, we consider (x, y, z) as a shortcut for (x, (y, z)), so that we do not need to formally
introduce triples; pairs are sufficient.

43

⊢ enc(pkC , (A,R1))
Msg1

⊢ enc(pkB, (A, y))

⊢ enc(pkA, (y,R2, B))
Msg2

⊢ enc(pkA, (R1, x, C))

⊢ enc(pkC , x)
Msg3

These rules describe everything the adversary can learn.
Formally, we define ⊢ as follows:

Definition 32 (Deduction relation) ⊢ is the smallest relation satisfying the deduc-
tion rules above.

This means that ⊢ t holds if and only if one can deduce ⊢ t by applying the rules
above.

Security proof of NSL. We will now show the security of NSL. In the special case
we are analyzing, it is sufficient to show that B never receives the message enc(pkB, R2).
That is, we have to show that 0 enc(pkB , R2). (0 is the negation of ⊢.)

Consider the following grammar:

M ::= enc(pkA|pkB|pkC ,M) | A | B | C | R1 | R̂i | (M,M) | enc(pkA, (R1, R2, B))

Security is based on the following claim:

Lemma 10 For any term t satisfying ⊢ t, we have that t matches the grammar of M .

This claim is easily proven by checking that for each deduction rule, we have that if
all terms in the preconditions match the grammar, then the terms in the postcondition
also match the grammar. For example, for rule Dec, we need to check that if enc(pkC , t)
matches the grammar for some term t, then t matches the grammar.

Since enc(pkB, R2) does not match the grammar, it immediately follows that:

Theorem 15 0 enc(pkB , R2).

Thus the NSL protocol is secure (in the symbolic model and our specific case).

14 Zero-knowledge

In many situations in cryptography, it is necessary for one party to convince another
party that certain data has a certain property without revealing too much information.
We illustrate this by an example:

Peggy wishes to purchase some goods from Vendor. These goods are only sold to
people aged at least 18. Peggy has a certificate issued from the government that certifies
her birthday (i.e., the government signed a message of the form “Peggy was born on

44

17. March 1979”). To prove that Peggy is at least 18 years old, she might simply send
the certificate to the Vendor. But, for privacy reasons, she does not wish to reveal her
birthday, only the fact that she is at least 18 years old.

This can be done by a so-called zero-knowledge proof: Peggy proves that she knows14

a valid signature on a message of the form “Peggy was born on x” where x is a date at
least 18 years before the present date. Such a zero-knowledge proof will then not reveal
anything beyond that fact. In particular, the value of x will not be revealed.

14.1 Definition

A proof system for a relation R is a protocol consisting of two machines (P, V). The
prover P expects arguments (1η , x, w) with (x,w) ∈ R. The value x is usually called the
statement and w the witness. The relation R models which witnesses are valid for which
statements. Intuitively, one can see x as describing some mathematical fact (e.g, “there
exists a value that has property P ”) and w as the proof of that fact (e.g., a particular
value with property P). Then (x,w) ∈ R just means that w is a valid proof for x. The
verifier V expects arguments (1η , x). Notice: the verifier does not get w, otherwise there
would not be any sense in proving the existence of such a w to the verifier.

The first (and most obvious) property of a proof system is that it should work. That
is, when prover and verifier are honest, the verifier should accept the proof. This property
is called completeness:

Definition 33 (Completeness) We call a proof system (P, V) complete if there exists
a negligible function µ such that for all η and all (x,w) ∈ R, we have

Pr[〈P (1η , x, w), V (1η, x)〉 = 1] ≥ 1− µ(η).

Here 〈A(a), B(b)〉 stands for the output of B after an execution in which A runs with
arguments a and B runs with arguments b and A and B interact.

The second thing one expects from a proof is that one cannot prove wrong things.
This is captured by the following definition:

Definition 34 (Computational soundness) A proof system (P, V) is computation-
ally sound15 with soundness error s iff for every polynomial-time machine P ∗ there exists
a negligible function µ such that for all η, all x /∈ LR, and all z, we have

Pr[〈P ∗(1η , x, z), V (1η , x)〉 = 1] ≤ s(η) + µ(η)

Here LR := {x : ∃w.(x,w) ∈ R}.
14The fact that Peggy knows a particular value (as opposed to the fact that this value exists) can

be modeled formally. In this exposition, however, we will only give definitions for proofs that show the
existence of certain values (Definition 34).

15Note: this notion of computational soundness has nothing to do with the notion of computational
soundness introduced in Section 13. They are just homonymes.

45

Of couse, we want proof systems with soundness error s = 0 (or equivalently: negli-
gible s). Nevertheless, it is useful to have a definition for proof systems with soundness
error s > 0 since the soundness error can be reduced by repetition of the proof.

Finally, we wish to formulate that when the prover runs with statement x and witness
w, the verifier learns nothing except the fact that x is a true statement:

Definition 35 (Zero-knowledge) A proof system (P, V) is computational zero-
knowledge if for any polynomial-time V ∗ there exists a polynomial-time S such that
for every polynomial-time D there exists a negligible function µ such that for all η, z,
(x,w) ∈ R, we have that

∣

∣Pr[b∗ = 1 : out ← 〈P (1η , x, w), V ∗(1η , x, z)〉, b∗ ← D(1η, z, out)]

− Pr[b∗ = 1 : out ← S(1η , x, z), b∗ ← D(1η, z, out)]
∣

∣ ≤ µ(η).

Intuitively, this definition means the following: Whenever the verifier can learn something
(which he outputs as out), there is a corresponding simulator that computes a value
out that cannot be distinguished from the real out (by the distinguisher D). That is,
whatever the verifier learns, the simulator can compute himself. But the simulator has
no information about the witness w, hence his output does not depend on w. Thus the
verifier learns nothing about w.

The additional input z (called the auxiliary input) models the fact that there might be
some additional information that the adversary has (e.g., from prior protocol executions).

14.2 Graph isomorphism

We now describe a particular zero-knowledge proof system, namely the proof system for
graph isomorphism. Give two graphs G1 = (V,E1) and G2 = (V,E2), an isomorphism
from G1 to G2 is a permutation π on V such that E2 = {(π(a), π(b)) : (a, b) ∈ E1}.
(Intuitively, an isomorphism is a shuffling of the graph.) We write π(G1) = G2. We call
two graphs G1 and G2 isomorphic if there is an isomorphism from G1 to G2.

For the rest of this section, let R := {((G1, G2), π) : π(G1) = G2}. That is, a
statement for this relation is a pair (G1, G2) of graphs, and a witness for these graphs is
an isomorphism between them. Hence a proof system for this relation will prove that G1

and G2 are isomorphic.

Construction 6 (Graph isomorphism proof system) • The prover P runs
with input (1η , (G1, G2), π) with π(G1) = G2. The verifier V runs with input
(1η , (G1, G2)).

• The prover picks a uniformly random permutation ρ
$← PermV and computes the

graph H := ρ(G1). (Notice that H is isomorphic to G1 and G2.) The prover sends
H to the verifier.

• The verifier picks i
$← {1, 2} and sends i to the prover.

• The prover computes σ as: σ := ρ if i = 1 and σ := ρ ◦ π−1 if i = 2. Then the
prover sends σ to the verifier.

• The verifier checks whether σ(Gi) = H. If so, he accepts (outputs 1).

46

Theorem 16 The proof system (P, V) from Construction 6 is complete, computational
zero-knowledge, and computationally sound with soundness error 1

2 .

The soundness error can be decreased to 2−n by repeating the proof system n times
sequentially (and letting the verifier accept only if he accepts each exeuction). E.g.,
n := η.

15 Quantum cryptography

In general, quantum cryptography refers to all areas of cryptography that involve quan-
tum mechanics. Specifically, quantum cryptography comes in two main flavors:

Post-quantum cryptography. Post-quantum cryptography refers to the study of
classical (i.e., non-quantum) cryptosystems and their security against quantum attackers.
That is, we consider the setting where the cryptographic protocols do not make use of
any advanced technologies (such as quantum computers, or quantum communication),
we want them to be secure against an attacker that may have access to a quantum com-
puter. The reason why post-quantum cryptography differs from classical cryptography
is the fact that quantum computers have properties that are very different from those
of classical computers.16 Most importantly (for cryptography), quantum computers can
achieve the following:

• Grover’s algorithm: Given a function f : {0, 1}n → {0, 1}, Grover’s algorithm finds
some x with f(x) = 1 in time O(

√

2n/t), assuming there are t such x. (Note:
classically, we only have algorithms doing this in O(2n/t).)

This implies, for example, that a brute-force search for an n-bit key can be done
in time O(2n/2), as opposed to O(2n) classically. As a consequence, to be secure
against quantum computers, we need twice as long keys.

• Shor’s algorithm: This algorithm can factor n-bit integers as fast as it takes to do
an n-bit modular exponentiation (i.e., O(n3) or less, depending on the method).
In comparison, classically, no polynomial-time algorithm is known. (The “number

field sieve” does it in time 2O(n1/3(log n)2/3).)

Shor’s algorithm (in a slightly different variant) also can compute the discrete log-
arithm in any finite abelian group in polynomial-time. (Assuming exponentiation
in that group is feasible in polynomial-time, this is the case for all crypto-relevant
groups.) The classical runtime for this depends very much on the group, but for
crypto-relevant groups it is not (known to be) polynomial.

16Today, no realistic quantum computers exist. However, we have a fairly clear idea of a suitable
computational model for what we call a “universal quantum computer” (as opposed to a special purpose
machine). This may not allow us to make exact estimates how much time a particular algorithm will run
(that would depend very much on the specific architecture). But the model is concrete enough to tell
whether a given algorithm is polyomial-time or not. Thus, we can build up quantum complexity theory
in a similar way as we build up classical complexity theory.

47

Thus Shor’s algorithm breaks RSA (by factoring), ElGamal (by computing discrete
logarithms), and many more public key cryptosystems. In fact, all commonly
deployed public key cryptosystems would be broken by Shor’s algorithm.

Due to those threats against cryptography, post-quantum cryptography investigates the
security of cryptographic schemes against quantum-computer attacks, in order to have a
secure infrastructure in place by the time usable quantum computers become a reality.

Quantum protocols. On the other hand, quantum mechanics allows us to construct
protocols that make active use of quantum effects. In particular, it is possible to send
“quantum data” over a glass fibre (encoded as photons). Such data has the properties
that one cannot copy it (“no cloning theorem”), one can measure the data partially, but
whenever one does, the data can be changed by the measurement, etc. This is used, for
example, in quantum key distribution. Quantum key distribution (QKD) is a protocol
that allows Alice and Bob to exchange a key (i.e., after the protocol Alice and Bob will
have the same key K, and no-one else is supposed to know anything about that key).
QKD has the following important properties:

• We assume between Alice and Bob only the existence of an authenticated channel
(i.e., a channel where an attacker Eve can read the messages that go over the
channel, but cannot change them) and a quantum channel (in this case, Eve is
allowed to intercept and change the messages in arbitrary ways).

• Even if Eve is computationally unlimited, she will not be able to learn anything
about the key (up to some negligible probability). That is, the protocol does not
rely on the assumption that a problems are computationally hard, when using QKD
we are safe from advances in algorithms, both classical and quantum.

One should mention, however, that today’s quantum technology still is not so reliable
that too much trust should be put into commercially existing quantum cryptography
hardware. Imperfections in the hardware can create vulnerabilities that have nothing
to do with the protocols themselves. For that reason, it is best to combine QKD with
classical public key cryptography, in order to get the best of two worlds.

References

[Hey] Howard M. Heys. A tutorial on linear and differential cryptanalysis.
http://www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.ps.

[MvV96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, Boca Raton, Florida, 1996. Online available
at http://www.cacr.math.uwaterloo.ca/hac/.

[Unr11] Dominique Unruh. Lecture “Cryptology I”, fall 2011. Webpage is
http://www.cs.ut.ee/~unruh/crypto1-11/.

48

http://www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.ps
http://www.cacr.math.uwaterloo.ca/hac/
http://www.cs.ut.ee/~unruh/crypto1-11/

Index

3DES, see triple DES

assumption
decisional Diffie-Hellman, 17
RSA, 15

asymmetric encryption scheme, 14
attack

brute-force, 2
chosen-ciphertext, 5
chosen-plaintext, 5
ciphertext-only, 5
known-plaintext, 5

automated verification, 41
auxiliary input, 46

best-effort design, 7
block cipher, 9
brute-force attack, 2

CBC mode, see cipher block chaining mode
CBC-MAC, 24
chosen-ciphertext attack, 5
chosen-plaintext attack, 5
cipher

block, 9
monoalphabetic substitution, 5
polyalphabetic substitution, 5
shift, 2
stream (synchronous), 7
substitution, 3
transposition, 5
Vigenère, 2

cipher block chaining mode, 14
ciphertext-only attack, 5
coincidence

index of, 3
collision resistance, 20
completeness, 45
compression function, 21
computational model, 41
computational soundness, 41, 45
computational zero-knowledge, 46

computer-aided verification, 41
confusion and diffusion, 11
counter mode, 14
cryptanalysis, 7

linear, 27
CTR mode, see counter mode

data encapsulation mechanism, 20
data encryption standard, see DES
DDH, see decisional Diffie-Hellman
decisional Diffie-Hellman assumption, 17
deduction relation, 44
DEM, see data encapsulation mechanism
DES, 9

double, 11
triple, 12

diffusion
confusion and, 11

digram, 3
distinguisher, 46
DMAC, 25
double DES, 11

ECB mode, see electronic code book mode
EF-CMA, 23, 36

(in ROM), 40
EF-OT-CMA, 37
electronic code book mode, 14
ElGamal encryption, 16
encryption

homomorphic, 17
encryption scheme

asymmetric, 14
hybrid, 20
public key, 14
symmetric, 15

Enigma, 4
existential one-time unforgeability

(signatures), 37
existential unforgeability

(MAC), 23

49

(signatures), 36
(signatures, in ROM), 40

FDH, see full domain hash
Feistel network, 10
full domain hash, 40
function

pseudo-random, 24

generator, 16
graph isomorphism, 46

hash
iterated, 21

hash function, 20
universal one-way, 39

HMAC, 23
homomorphic encryption, 17
hybrid encryption scheme, 20

IND-CCA
(public key encryption), 18

IND-CPA, 13
(public key encryption), 16

IND-OT-CPA, 8
index of coincidence, 3
initial permutation, 10
initialization vector, 14
input sum, 30
isomorphism

graph, 46
iterated hash, 21

KEM, see key encapsulation mechanism
key

public, 14
round, 10
secret, 14

key encapsulation mechanism, 20
key schedule, 10
key-stream, 7
known-plaintext attack, 5

linear approximation table, 29
linear cryptanalysis, 27

MAC, see message authentication code
malleability, 17
meet-in-the-middle attack, 11
Merkle-Damgård construction, 21
message authentication code, 22
mode of operation, 13
monoalphabetic substitution cipher, 5

Needham-Schröder protocol, 41
Needham-Schröder-Lowe protocol, 42
NSL, see Needham-Schröder-Lowe protocol

one-way function, 33, 34
oracle

random, 34
output sum, 30

padding, 14
perfect secrecy, 6
permutation

initial, 10
strong pseudo-random, 12

PKI, see public key infrastructure
plugboard, 4
polyalphabetic substitution cipher, 5
PRF, see pseudo-random function
PRG, see pseudo-random generator
prime

safe, 16
proof system, 45
Provable security., 7
prover, 45
PRP, see pseudo-random permutation
pseudo-random function, 24
pseudo-random generator, 8
pseudo-random permutation

strong, 12
public key, 14
public key encryption scheme, 14
public key infrastructure, 14

random oracle, 34
random oracle heuristic, 34
reduction (proof), 9
reflector, 4

50

relation
deduction, 44

rotor, 4
round key, 10
RSA

textbook, 15
RSA assumption, 15
RSA-FDH, see RSA-full domain hash
RSA-full domain hash, 40

S-box, 11
safe prime, 16
secrecy

perfect, 6
secret key, 14
shift cipher, 2
signature, 36
signature scheme, 36
simulator, 46
soundness

computational, 41, 45
standard model, 35
statement, 45
stream cipher

(synchronous), 7
strong pseudo-random permutation, 12
substitution cipher, 3

monoalphabetic, 5
polyalphabetic, 5

substitution-permutation network, 27
symbolic cryptography, 40
symbolic model, 40
symmetric encryption scheme, 15
synchronous stream cipher, 7

tag
(MAC), 22

textbook RSA, 15
transposition cipher, 5
triple DES, 12

universal one-way hash function, 39
UOWHF, see universal one-way hash func-

tion

verification
automated, 41
computer-aided, 41

verifier, 45
Vigenère cipher, 2

witness, 45

zero-knowledge
computational, 46

51

Symbol index

MACCBC -MAC CBC-MAC message authentication code 24
MACDMAC DMAC message authentication code 25
⊢ t Adversary can deduce (know) the term t 43
〈A,B〉 Interaction of machines A and B 45
|x| Absolute value / length / cardinality of x
δab Kronecker’s delta (= 1 iff a = b) 3
IC(x) Index of coincidence of x 3

x
$← Y x is uniformly randomly chosen from set Y 6

Pr[B : P] Probability of B after executing P 6
⊕ Bitwise XOR 6
x← A x is assigned output of algorithm A 6
AX Algorithm A with oracle access to X 13
QRn Quadratic residues modulo n
Primesη Primes of length η 15
PermM Set of all permutations on M 13
sk Usually denotes a secret key 15
pk Usually denotes a public key 15
{0, 1}∗n Bistrings with length multiple of n 21
SafePrimesη Safe primes of length η

HMD Merkle-Damgård construction 21
HIH Iterated hash 21
FunM→N Set of functions from M to N 24
MACHMAC HMAC message authentication code 23

52

	Historical ciphers
	Cipher and attack types
	Perfect secrecy and the one-time pad
	Stream ciphers and pseudo-randomness
	Digression – Best effort design and provable security
	Stream ciphers with provable security

	Block ciphers
	Data encryption standard (DES)
	Meet-in-the-middle attack and 3DES
	Security definitions
	Modes of operation

	Public key encryption
	RSA
	ElGamal encryption
	Malleability and chosen ciphertext attacks
	Hybrid encryption

	Hash functions
	Hash functions from compressions functions
	Constructing compression functions
	Birthday attacks

	Message authentication codes
	Cryptanalysis
	Linear cryptanalysis

	One-way functions
	Random Oracle Model
	Signature schemes
	Signatures from one-way functions.
	Full domain hash

	Symbolic cryptography
	Analysis of the Needham-Schröder-Lowe protocol

	Zero-knowledge
	Definition
	Graph isomorphism

	Quantum cryptography
	Symbol index

