Quantum Cryptography (fall 2018)

Dominique Unruh

Exercise Sheet 8

Out: 2018-11-20

Due: 2018-11-27

Problem 1: Commuting Measurements

Let \mathcal{H} be a Hilbert space and let $|\Psi_1\rangle, \ldots, |\Psi_n\rangle$ be an orthonormal basis of \mathcal{H} .

Let $M = \{P_1, \ldots, P_a\}$ and $M' = \{P'_1, \ldots, P'_b\}$ be measurements on \mathcal{H} . Assume that each P_i and P'_i is of the form $\sum_j \lambda_j |\Psi_j\rangle \langle \Psi_j|$. (Here the λ_j may be different for the different projectors, but the $|\Psi_j\rangle$ are the same for all projectors.)

We will show that it does not matter in which order to apply the measurements M and M' for any density operator ρ .

More precisely, consider the following two experiments:

- (i) Measure ρ with measurement M and then measure the resulting post-measurement state with measurement M'. Let ρ and ρ' denote the outcomes of M and M', respectively, and let $\tilde{\rho}$ denote the final post-measurement state.
- (ii) Measure ρ with measurement M' and then measure the resulting post-measurement state with measurement M. (I.e., the measurements are applied in inverse order.) Let o and o' denote the outcomes of M and M', respectively, and let $\tilde{\rho}'$ denote the final post-measurement state.

Show the following facts:

- (a) For all i, j we have $\Pr[o = i \text{ and } o' = j$: experiment (i)] = $\Pr[o = i \text{ and } o' = j$: experiment (ii)].
- (b) For all i, j, we have $\tilde{\rho} = \tilde{\rho}'$ where $\tilde{\rho}$ and $\tilde{\rho}'$ are the post-measurement states in the case of o = i and o' = j.

Hint: You may assume without loss of generality that $|\Psi_1\rangle, \ldots, |\Psi_n\rangle$ is the computational basis $|1\rangle, \ldots, |n\rangle$. (Since otherwise one can just do a basis transformation to transform it into that basis.) In that case, all P_i and P'_i will be diagonal.

Problem 2: Techniques from the QKD proof

Consider the following (rather useless) protocol. Alice gets a state $\rho \in S(\mathbb{C}^{2^n})$ consisting of *n* qubits. Then Alice chooses a random $i \in \{1, \ldots, n\}$ and measures the *i*-th qubit in ρ in the computational basis. (The qubit is not discarded after the measurement.) If this measurement returns 1, Alice aborts. Let $\tilde{\rho}$ denote the state that Alice has under the condition that she does not abort. Let $P_{success}$ denote the probability of *not* aborting. In the following, by $T(\rho)$ we denote the density operator $p\tilde{\rho}$ where p is the probability that ρ passes Alice's test and $\tilde{\rho}$ is the state that results after passing Alice's test. (In particular, $\tilde{\rho} = \frac{T(\rho)}{\operatorname{tr} T(\rho)}$ and $p = \operatorname{tr} T(\rho)$.) For any projector P, we write short $P(\rho)$ for $P\rho P^{\dagger}$.

Hint: The following proofs use techniques that have appeared in the proof of QKD. However, the present case is somewhat simpler.

- (a) Assume that $\rho = |x\rangle\langle x|$ for some $x \in \{0,1\}^n$, $x \neq 0^n$. Show that ρ passes Alice's test with probability at most $\delta := \frac{n-1}{n}$.
- (b) Assume that $\rho = \sum_{x \in \{0,1\}^n} p_x |x\rangle \langle x|$ for some $p_x \ge 0$, $\sum p_x = 1$. Let $P_{ok} := |0^n\rangle \langle 0^n|$. Show that $\operatorname{tr} P_{ok}(\tilde{\rho}) \ge 1 - \frac{\delta}{P_{success}} = 1 - \frac{\delta}{\operatorname{tr} T(\rho)}$.
- (c) Assume that $\rho \in S(\mathbb{C}^{2^n})$ (arbitrary state). Show that $\operatorname{tr} P_{ok}(\tilde{\rho}) \geq 1 \frac{\delta}{P_{success}}$.

Hint: Consider a complete measurement in the computational basis, and use the fact that it commutes with other measurements in the computational basis.

(d) Show that
$$\text{TD}(\tilde{\rho}, |0^n\rangle\langle 0^n|) \cdot P_{success} \leq \sqrt{\frac{n-1}{n}}$$
.