Problem 1: Commuting Measurements

Let \(\mathcal{H} \) be a Hilbert space and let \(|\Psi_1\rangle, \ldots, |\Psi_n\rangle \) be an orthonormal basis of \(\mathcal{H} \).

Let \(M = \{P_1, \ldots, P_a\} \) and \(M' = \{P'_1, \ldots, P'_b\} \) be measurements on \(\mathcal{H} \). Assume that each \(P_i \) and \(P'_i \) is of the form \(\sum_j \lambda_j |\Psi_j\rangle \langle \Psi_j| \). (Here the \(\lambda_j \) may be different for the different projectors, but the \(|\Psi_j\rangle \) are the same for all projectors.)

We will show that it does not matter in which order to apply the measurements \(M \) and \(M' \) for any density operator \(\rho \).

More precisely, consider the following two experiments:

(i) Measure \(\rho \) with measurement \(M \) and then measure the resulting post-measurement state with measurement \(M' \). Let \(o \) and \(o' \) denote the outcomes of \(M \) and \(M' \), respectively, and let \(\tilde{\rho} \) denote the final post-measurement state.

(ii) Measure \(\rho \) with measurement \(M' \) and then measure the resulting post-measurement state with measurement \(M \). (i.e., the measurements are applied in inverse order.) Let \(o \) and \(o' \) denote the outcomes of \(M \) and \(M' \), respectively, and let \(\tilde{\rho}' \) denote the final post-measurement state.

Show the following facts:

(a) For all \(i, j \) we have \(\Pr[o = i \text{ and } o' = j : \text{ experiment (i)}] = \Pr[o = i \text{ and } o' = j : \text{ experiment (ii)}] \).

(b) For all \(i, j \), we have \(\tilde{\rho} = \tilde{\rho}' \) where \(\tilde{\rho} \) and \(\tilde{\rho}' \) are the post-measurement states in the case of \(o = i \) and \(o' = j \).

Hint: You may assume without loss of generality that \(|\Psi_1\rangle, \ldots, |\Psi_n\rangle \) is the computational basis \(|1\rangle, \ldots, |n\rangle \). (Since otherwise one can just do a basis transformation to transform it into that basis.) In that case, all \(P_i \) and \(P'_i \) will be diagonal.

Problem 2: Techniques from the QKD proof

Consider the following (rather useless) protocol. Alice gets a state \(\rho \in S(\mathbb{C}^{2^n}) \) consisting of \(n \) qubits. Then Alice chooses a random \(i \in \{1, \ldots, n\} \) and measures the \(i \)-th qubit in \(\rho \) in the computational basis. (The qubit is not discarded after the measurement.) If this measurement returns 1, Alice aborts. Let \(\tilde{\rho} \) denote the state that Alice has under the condition that she does not abort. Let \(P_{\text{success}} \) denote the probability of not aborting.
In the following, by $T(\rho)$ we denote the density operator $p\tilde{\rho}$ where p is the probability that ρ passes Alice’s test and $\tilde{\rho}$ is the state that results after passing Alice’s test. (In particular, $\tilde{\rho} = \frac{T(\rho)}{\text{tr} T(\rho)}$ and $p = \text{tr} T(\rho)$.) For any projector P, we write short $P(\rho)$ for $P\rho P^\dagger$.

Hint: The following proofs use techniques that have appeared in the proof of QKD. However, the present case is somewhat simpler.

(a) Assume that $\rho = |x\rangle\langle x|$ for some $x \in \{0, 1\}^n$, $x \neq 0^n$. Show that ρ passes Alice’s test with probability at most $\delta := \frac{n-1}{n}$.

(b) Assume that $\rho = \sum_{x \in \{0, 1\}^n} p_x |x\rangle\langle x|$ for some $p_x \geq 0$, $\sum p_x = 1$. Let $P_{ok} := |0^n\rangle\langle 0^n|$. Show that $\text{tr} P_{ok}(\tilde{\rho}) \geq 1 - \frac{\delta}{P_{\text{success}}} = 1 - \frac{\delta}{\text{tr} T(\rho)}$.

(c) Assume that $\rho \in S(\mathbb{C}^{2^n})$ (arbitrary state). Show that $\text{tr} P_{ok}(\tilde{\rho}) \geq 1 - \frac{\delta}{P_{\text{success}}}$.

Hint: Consider a complete measurement in the computational basis, and use the fact that it commutes with other measurements in the computational basis.

(d) Show that $\text{TD}(\tilde{\rho}, |0^n\rangle\langle 0^n|) \cdot P_{\text{success}} \leq \sqrt{\frac{n-1}{n}}$.