Modular Cryptographic Verification by Typing

Cédric Fournet
Microsoft Research

Modularity in programming through the use of well defined
interfaces serves the same goals as secure composition in cryp-
tography. The intuition is that modules that export the same
programming interface, as well as modules that implement the
same cryptographic functionality, should be interchangeable
with respect to the properties of the rest of the system, both
in a programming and in a cryptographic sense.

We develop a cryptographic verification method based on
modular programming and typechecking. We use a composi-
tion theorem in the simulation-based security flavor to reason
about mutually-replaceable modules in a cryptographic sense.
We use refinement types to reason about the preservation of
properties as we replace modules behind typed interfaces.

Protocol modularity To reason about large software systems
that rely on cryptographic algorithms, we need modularity both
for programming and for cryptography.

We first reason cryptographically about an ideal function-
ality that is emulated by a particular cryptographic module,
much as with universal composability or reactive simulatabil-
ity [6, 1]. We then replace the real module of the protocol by
an ideal module. We repeat this until all modules are ideal. The
ideal modules can be shown to export interfaces that allow us
to reason about the security properties of the whole program.
In a second step, we check the security of the whole program
purely using typing, or other static program analyses, adapted
from symbolic techniques for protocol verification [3, 5].

We illustrate our approach on variants of the code of a
sample protocol for authenticating remote procedure calls
(RPC) adapted from Bhargavan et al. [5], using the refinement
type checker F7 [4] and a library that emulates an ideal MAC
functionality. In the protocol, a client and a server exchange
requests s and responses ¢ coded as strings. To authenticate
and correlate these strings, the protocol uses MACs computed
from a shared key k. We show how to separate the crypto-
graphic treatment of MACsSs using unforgeability under chosen-
message attacks and the protocol verification using refinement
types for authentication.

Cryptographic modularity Computational soundness results
for symbolic cryptography can be seen as a special case of
modular verification. In that case, a global ideal functionality
used for expressing soundness, e.g. [2], consists of a complete
Dolev-Yao library [7] where all cryptographic computations
are replaced by algebraic terms, all given the same abstract
type for bytes. In other cases, it is preferable to consider
separate, simpler ideal functionalities that remain closer to
real cryptographic algorithms, such as functionalities that still
operate on concrete bytes but exclude cryptographic failures.

Markulf Kohlweiss
Microsoft Research

Modularity is usually subject to conditions, depending on
the underlying cryptography. Type interfaces with refinement
types are a good match for defining these restrictions, in a way
that can be automatically enforced for protocol verification.
Refinement types go both ways; they define post-conditions on
the results of cryptographic operations, e.g. that a MAC cannot
be forged, but also allow us to describe the pre-conditions on
these operations that are required to use them securely. Con-
ditions could express important restrictions on the adversary,
for instance that a CCA secure encryption scheme provides
security only if its interface excludes any environment that
may create an encryption cycle [8]. Conditions could also be
intended to ‘honest’ users in the environment, for instance
that they only use a key with its intended primitive, and never
reveal it to the adversary. Another condition may be that honest
users do not decrypt any ciphertext that is not known to be
a correct encryption using the same key. Irrespective of our
interpretation of these conditions, as actual restrictions on a
malicious adversary or as contracts towards programmers, we
can systematically express and typecheck them.

We illustrate our approach by extending the RPC protocol
outlined above with sample key exchange mechanism that
establish sessions-specific MAC keys using long-term secrets.
We show how the key exchange can be separately verified then
composed with the RPC protocol.

REFERENCES

[1] M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulata-
bility (rsim) framework for asynchronous systems. Inf. Comput.,
205(12):1685-1720, 2007.

[2] M. Backes, M. Maftei, and D. Unruh. Computational sound
verification of source code. In ACM Conference on Computer
and Communications Security, Oct. 2010.

[3] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and
S. Maffeis. Refinement types for secure implementations. In
21st IEEE Computer Security Foundations Symposium (CSF’08),
pages 17-32, 2008.

[4] K. Bhargavan, C. Fournet, and A. D. Gordon. F7: refine-
ment types for F#, Sept. 2008. Available from http://research.
microsoft.com/F7/.

[5] K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verifica-
tion of security protocol code by typing. In ACM Symposium on
Principles of Programming Languages (POPL’10), Jan. 2010.

[6] R. Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In FOCS, pages 136-145, 2001.

[7] D. Dolev and A. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, 1T-29(2):198-208,
1983.

[8] R. Kiisters and M. Tuengerthal. Universally composable symmet-
ric encryption. In CSF, pages 293-307. IEEE Computer Society,
2009. ISBN 978-0-7695-3712-2.


http://research.microsoft.com/F7/
http://research.microsoft.com/F7/

