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Abstract. The collision-resistance of hash functions is an importantfoundation of many cryptographic protocols.
Formally, collision-resistance can only be expected if thehash function in fact constitutes a parametrized family of
functions, since for a single function, the adversary couldsimply know a single hard-coded collision. In practical ap-
plications, however, unkeyed hash functions are a common choice, creating a gap between the practical application
and the formal proof, and, even more importantly, the concise mathematical definitions.
A pragmatic way out of this dilemma was recently formalized by Rogaway: instead of requiring that no adversary
exists that breaks the protocol (existential security), one requires that given an adversary that breaks the protocol,we
can efficiently construct a collision of the hash functionusing an explicitly given reduction(constructive security).
In this paper, we show the limits of this approach: We give a protocol that is existentially secure, but that provably
cannot be proven secure using a constructive security proof.
Consequently, constructive security—albeit constituting a useful improvement over the state of the art—is not
comprehensive enough to encompass all protocols that can bedealt with using existential security proofs.

1 Introduction

The collision-resistance of hash functions is an importantingredient of many cryptographic protocols. For-
mally, collision-resistance can only be expected if the hash function in fact constitutes a parametrized family
of functions, since for a single function, the adversary could simply have a collision hard-coded into its pro-
gram. In practical applications, however, such unkeyed hash functions are often used (e.g.,SHA-1), creating
a gap between the practical application and the formal proof, and, even more importantly, the concise math-
ematical definitions.

A pragmatic way out of this dilemma was discussed by Stinson [Sti01] and recently formalized by
Rogaway [Rog06]: instead of requiring that no adversary exists that breaks the protocol (existential security),
one requires that given an adversary that breaks the protocol, one can efficiently construct a collision of the
hash functionusing an explicitly given reduction(constructive security).

Slightly more formally, the dilemma can be described as follows: An existential security proof for a
protocol π shows the following: If there exists a polynomial-time adversary A that has a non-negligible
advantage in breaking the protocol, then there exists a polynomial-time adversaryB that has a non-negligible
advantage in breaking at least one of the assumptions of the protocol. Here, the exact meaning of the word
advantagedepends on the security notion under consideration; in a proof system for example, the advantage
would be the probability to convince the verifier of a wrong fact. For collision-resistant hash functions, it
would be the probability of finding a collision. Consideringa protocolπ whose security is based on the
collision-resistance of anunkeyedhash functionH, an existential security proof would show the following:
If an adversaryA has non-negligible advantage in breakingπ, there is an adversaryB that outputs a collision
of H with non-negligible probability. However, this is vacuously true: There always exists an adversary that



has a collision ofH hard-coded into its program and outputs this collision withprobability one. We, that is
the totality of all human beings, might not know this adversary, but it exists nonetheless. To circumvent this
problem, mathematical definitions and proofs usually make use of keyed hash functions. In this case, for
every keyK the collision might be different so that the assumption thatno polynomial-time adversary can
compute collisions for more than a small fraction of the keysis sensible.

But what if we are forced to use unkeyed hash functions, e.g.,because of efficiency considerations or
simply because industrial applications often rely on unkeyed hash functions? Do we lose all possibility
to prove security, since we cannot expect an existential security proof in this case? Fortunately, this is
not necessarily the case: we may ground security on the observation that although there always exists an
adversary finding a collision of an unkeyed hash function, this adversary might not be explicitly known.
This leads to the following approach that was recently formalized by Rogaway [Rog06]: A constructive
security proof for a protocolπ that uses a hash functionH is an efficient transformationC (that must be
explicitly given) that, upon input an adversaryA and the hash functionH, outputs a collision ofH. If
someone finds a successful adversaryA, he hence also knows an adversary breaking the collision-resistance
of the hash function.

Rogaway [Rog06] stresses that most existential security proofs already constitute constructive security
proofs and that all that must be done for concisely handling unkeyed hash functions is to rephrase those
proofs in a constructive setting. Indeed, folklore has always believed that protocols with existential security
proofs can be transformed into constructive ones. In some cases it may be as easy as rephrasing the theorem
statement, in other cases it may be as hard as finding a different proof. E.g., [Rog06] writes: “In general,
it is well understood that one can rephrase provable-security results as assertions about explicitly given
reductions”. Although this folklore statement may hold true in many cases of practical interest, we show
that it does not hold true in general. We construct a protocol(more exactly, a zero-knowledge argument of
knowledge) that we show secure with an existential securityproof, but for which we further show that there
provably does not exist any constructive security proof.

Hence although constructive security proofs may constitute a useful improvement over the state of the art,
there are applications where the use of unkeyed hash functions cannot be justified even with this technique.

1.1 Our Contribution

We show how hash functions can be used to construct protocolsthat can be shown secure using an existential
security proof, but that cannot be proven secure using a constructive security proof. We investigate argument
systems (computationally sound proof systems) as our security notion of interest. The approach can be
adapted to other notions as well, e.g., by constructing a protocol for another task that uses and depends on
the argument system presented in this paper.

In more detail, we construct, depending on a hash functionH, a proof system(PH , V H) of which we
can show the following properties:
– Under two nonstandard but reasonable assumptions (discussed below in the paragraph on complexity

assumptions and formalized in Assumption 1 in the body of thepaper) and the assumption thatH is a
non-uniform collision-resistant hash function, we can give anexistentialsecurity proof for(PH , V H).

– Using Assumption 1, we can prove that one cannot give aconstructivesecurity proof that reduces the
security of(PH , V H) to the collision-resistance ofH. This even holds independent of any additional
assumptions we might use for the constructive security proof (as long as these assumptions are not false).

At a first glance, this separation may seem confusing becauseof the different layers of assumptions (in
the proofs themselves and in the proofs about proofs). Thus the following view might help to improve the
intuition underlying our result: In a world where Assumption 1 has beenprovento hold, it will be possible
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to showexistentiallythat (PH , V H) is secure ifH is collision-resistant, but aconstructivesecurity proof
for (PH , V H) reducing to the collision resistance ofH will be impossible.

At this point, we consider it important to stress that our assumptions and in particular our proofs strongly
rely on the careful distinction of non-uniform and uniform complexity. In particular, we use non-uniform
techniques to prove results about uniform algorithms.

Basic Idea of the ConstructionIn order to construct a zero-knowledge argument of knowledge that has an
existential proof of security but no constructive securityproof, we use the following general approach. We
take an existing zero-knowledge proof of knowledge(P †, V †) and modify it as follows: Instead of directly
showing that a given statementσ holds, the proverPH shows (usingP †) that one of the following two
statements holds:
– he knows a witness for the statementσ, or
– he knows a ciphertextc that is the encryption of a collision ofH.

The basic idea is that given an adversary that knows such a ciphertextc, one can break the argument. How-
ever, given an adversary with a hard-coded ciphertext, a constructive security proof should not be able to
extract the collision contained in the ciphertext. We have to achieve the following two goals:
– If H is a collision-resistant keyed hash function, it is hard to find a ciphertextc that is the encryption of

a collision ofH. Otherwise the argument can be easily broken even if the hashfunction is secure, thus
even defying the existential security proof.

– Given c, it is hard to extract a collision fromc; in particular, the decryption key should be secret. Oth-
erwise a constructive security proof can use a knowledge extractor to extractc from a successful prover
and then extract a collision fromc. Further, the decryption ofc should not be part of the witness used
for the proof system(P †, V †) since this witness could then be extracted from the adversary.

We achieve the first goal as follows: To ensure that it is hard to find a ciphertext given a collision-resistant
keyed hash function, we use an encryption scheme that can be broken by non-uniform adversaries, but that
is secure against uniform adversaries. An adversary that breaks(PH , V H) entails an adversary that finds
a ciphertextc that is the encryption of a collision ofH. This again entails the existence of anon-uniform
adversary decrypting these ciphertexts and thus finding collisions. Consequently, if we requireH to be a
keyed hash function that is collision-resistant againstnon-uniformadversaries, we obtain a contradiction.
On the other hand, a constructive security proof cannot obtain the collisions in this way, since in such a
proof the reduction would have to be explicitly given and thus in particular be a uniform algorithm.

The second goal is achieved as follows: We do not directly show (usingP †) thatc is the encryption of a
collision ofH, since this would necessitate to use the plaintext, i.e., the collision, as a witness, which in turn
would allow to extract this witness. Instead, we introduce another proof system(P ∗, V ∗). This proof system
is non-interactive (in the strong sense that it does not evenuse a common reference string), statistically sound
(otherwise the overall scheme could be broken by non-uniform adversaries that know a single wrong proof)
and it should hide the plaintext of the encryptionc. The last condition roughly means that if some adversary
can extract the plaintext ofc given a proofN , then it could also extract the plaintext without knowledge
of N with non-negligible probability. We call such a proof system acontent-hiding proof of content. Given
a content-hiding proof of content, we do not directly prove that c is an encryption of a collision, but that
we know a non-interactive proofN that c is an encryption of a collision. Then in the constructive security
proof, c andN might be extractable from an adversary, but this would not beof help: If one could extract
a collision fromc andN , one could extract one fromc alone as well (since(P ∗, V ∗) is content-hiding).
If the encryption scheme is IND-CPA secure, the encryptionc alone is indistinguishable from a random
encryption. Thus one could also find the collision without using c at all. A constructive security proof would
hence imply the existence of an algorithm to find collisions.
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Summary of the ConstructionWe now summarize our construction in a more detailed and a more concise
manner. Letf be a one-way permutation that is secure against uniform adversaries, but can be inverted by
non-uniform adversaries (Definition 2). Fromf we construct an encryption schemeEf such that for each
security parameter, there is a fixed public key, and such thatthe corresponding secret key can be found by a
non-uniform adversary (Definition 3). The schemeEf is shown to be IND-CPA secure (Lemma 2).

Let then(P ∗, V ∗) be a content-hiding proof of content for the encryption scheme Ef (Definitions 4
and 5). That is, usingP ∗ we can show non-interactively that a given ciphertextc is the encryption of a
cleartextm that fulfills a given propertyπ. SinceP ∗ is content-hiding, we know that if we can extract the
plaintext fromc given the non-interactive proof, we can also do so without access to the proof. Let(P †, V †)
be a computational zero-knowledge proof of knowledge. LetH be a hash function (keyed or unkeyed). Then
we construct the argument system(PH , V H) as follows (Definition 6):

– The proverPH takes as input a SAT-instanceσ and a corresponding witnessw. The verifierV H expects
a SAT-instanceσ.

– To show his knowledge ofw, the proverPH invokes the proverP † to show that either
• he knows a witnessw for σ, or
• he knows a ciphertextc and a non-interactive proofN such that the proofN convinces the verifier

V ∗ that the ciphertextc is an encryption of a collision ofH.
The prover can easily perform this proof since he knows the witnessw.

– The verifierV H usesV † to verify the above proof.

Note that the proverP ∗ is never used in the above construction. The existence ofP ∗ will however be used
in the proofs.

On our Complexity AssumptionsOur proof is based on the existence of content-hiding proofsof content as
well as on the existence of one-way permutations with non-uniform trapdoors, which constitute nonstandard
complexity assumptions. To motivate these assumptions, weprove that relative to a random oracle these
assumptions follow from standard ones.

At a first glance, it may seem that a result that needs such strong assumptions and involved constructions
will not be of relevance for the provability of natural protocol constructions, i.e., construction which do not
have the creation of a counterexample in mind. We would like to point out the following counterarguments:
First, one reason why we need such strong assumptions is thatwe do not only want a protocol that cannot be
proven secure using constructive proofs, but thatprovablycannot be proven secure using constructive proofs.
The reason for the complexity of our example may hence not follow from the fact that all natural protocols
have constructive proofs, but rather from the fact that proving unprovability is in general a difficult task.
Secondly, somewhat similar techniques have already been used in the literature: Barak [Bar01] presents an
argument system in which the prover proves that the statement under consideration is true or that he knows a
short circuit describing (the data sent by) the verifier. This seemingly contrived construction then was shown
to allow for argument systems that enjoy properties that where shown to be impossible for zero-knowledge
argument systems that do not use the circuit of the adversary(i.e., black-box zero-knowledge argument
systems). In that light it may well be possible that some useful protocol will have to use constructions
similar to the ones presented in this work and therefore willhave no constructive security proof.

1.2 Related Work

Hash functions where first formalised in [Dam87]. In [Rog06]the notion of a constructive security proof
was made explicit, although the concept was already discussed or implicitly used in many other papers.
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The idea of considering problems relative to oracles to analyze complexity assumptions was introduced
by [BGS75]. See also [For94] for a survey and a discussion of such relativisation techniques.

An example of a non-constructive security proof can be foundin [DN02, Section 8]. They give a re-
settable zero-knowledge proof in the timing-model, and theproof of soundness uses a non-constructive
reduction. However, it is not shown that their protocol doesnot have a constructive proof. In contrast, the
complexity of our constructions result from the necessity of creating a scheme where we canprove that
no constructive security proof exists. We believe that the result of [DN02] and our result complement each
other: [DN02] show that there arenatural protocols where we donot knowconstructive security proofs,
while we show that there areconstructedprotocols where constructive security proofs donot exist(under
complexity assumptions).

2 Preliminaries and Notation

By x← A we mean assigning the output of the probabilistic algorithmA to x, and byx
$
← M assigning a

uniformly randomly chosen element ofM to x. By 〈A,B〉 we mean the output ofB after an interaction of
the interactive machinesA andB. The variablek will always denote the security parameter.

An unkeyed hash functionH is a function from{0, 1}∗ to {0, 1}n for somen that can be computed in
deterministic polynomial time. Akeyed (family of) hash functionsconsists of a family{HK} of functions
together with an efficient key generation algorithmGH such that the following holds: GivenK andx, the
imageHK(x) can be computed in deterministic polynomial time. Further,for K ← GH(1k), the function
HK maps{0, 1}∗ to {0, 1}`(k) for some polynomially bounded functioǹ.

Of central interest to this paper is the notion of a constructive security proof. In principle, a constructive
security proof consists of two parts: an explicitly given reductionC from adversaries to collisions, and a
proof thatC is indeed such a reduction. Since we are only interested in negative results in this paper, it
will be sufficient to show that no such reductionC exists. We therefore slightly abuse notation and define
a constructive security proof to solely consist of this reduction C. That is, we do not even require that the
reduction is proven to be correct.

Furthermore, we will confine ourselves to constructive security proofs that a given protocol is an argu-
ment system. This results in a less abstract definition, which is sufficient for our application. Examples of
constructive security proofs for other properties are given in [Rog06].

Let (PH , V H) be a proof system parametrized by an unkeyed hash functionH that is assumed to be
given as a circuit. For an adversaryA (given as a circuit) and an unsatisfiable SAT-formulaσ, we define

Advarg
V H ,k

(A,σ) := Pr[〈A,V H(1k, σ)〉 = 1].

Further, for an algorithmC, let

Advcol
H,k(C,A, σ) := Pr[(x, x′)← C(1k,H,A, σ) : x 6= x′ andH(x) = H(x′)].

Definition 1 (Constructive Security Proof).Let (PH , V H) be a proof system parametrised by an unkeyed
hash functionH. We call an algorithmC a constructive security proof that(PH , V H) is an argumentif C

runs in uniform probabilistic polynomial-time and there exist somec > 0 and some negligible functionµ
such that for all circuitsA, all unsatisfiable boolean formulasσ and allk ∈ N we have

Advcol
H,k(C,A, σ) ≥

(

Advarg
V H ,k

(A,σ)

k + |A|+ |H|+ |σ|

)c

− µ(k).
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Our notion of a constructive security proof slightly deviates from the notion put forward in [Rog06]. The
most obvious difference is that [Rog06] does not contain anyasymptotic definition of a constructive security
proof. Instead, all results are given in terms of concrete security, i.e., the relation between the advantage to
break the protocol and the advantage to find collisions is given explicitly. A negative statement, i.e., a claim
that a given protocol has no constructive security proof, cannot rely on concrete security since one does
not aim to show that a given relation between the two advantages does not hold, but that no (useful) lower
bound forAdvcol in terms ofAdvarg exists. To characterize such useful lower bounds we have introduced
the above asymptotic formulation. Since we are interested in a negative result, we have made the lower
bound as weak as possible.

A notion of black-box constructive proofs has also been formalized in [Rog06]. Since black-box is the
stricter kind of reduction, our negative result encompasses this notion as well.

3 Assumptions Underlying our Negative Result

In this section, we will present two cryptographic assumptions that are needed in our proof.

3.1 One-Way Permutations with Non-Uniform Trapdoors

The first assumption roughly states that there are one-way permutations that are secure against uniform
adversaries but that can be inverted by non-uniform ones.

Definition 2 (One-Way Permutations with Non-Uniform Trapdoors). A functionf : {0, 1}∗ → {0, 1}∗

is a one-way permutation with non-uniform trapdoors, if

– The functionf is a length-preserving permutation that is computable in deterministic polynomial time.
– The functionf is one-way against uniform adversaries.
– There exists a sequencetk of polynomial-sized circuits, such thattk(f(x)) = x for all k ∈ N and all

x ∈ {0, 1}k .

The existence of one-way permutations with non-uniform trapdoors constitutes a nonstandard complexity
assumption in cryptography. Although we did not succeed in reducing the existence of one-way permutations
with non-uniform trapdoors to more common assumptions in general, we show that there is an oracle relative
to which this is possible.

Lemma 1. Assume that trapdoor one-way permutations with dense public keys3 exist that are one-way
against uniform probabilistic polynomial-time adversaries. Then there exists an oracleO relative to which
one-way permutations with non-uniform trapdoors exist.

The proof of this lemma is given in subsection A.1.
The proof of Lemma 1 in fact shows a stronger statement: choosing a random oracle entails one-way

permutations with non-uniform trapdoors with probabilityone. If we accept the random oracle heuristic, the
following conjecture is thus made realistic by the proof of Lemma 1:

Conjecture 1.Let R be a sufficiently unstructured, efficiently computable function. Then usingR in the
construction of the proof of Lemma 1 yields one-way permutations with non-uniform trapdoors.

3 We say a family of trapdoor permutations has dense public keys if the distribution of the public keys is near the uniform
distribution on the set of strings of a given length. Intuitively, this means that we can choose the public key using only public
coins.

6



Using one-way permutations with non-uniform trapdoors, wecan use the standard construction for cre-
ating IND-CPA secure encryption schemes from one-way permutations. The result is an encryption scheme
where for each security parameter there is a single public key, and where the corresponding secret keys can
be recovered by non-uniform adversaries (but not by uniformones).

Definition 3 (Singleton Encryption). Let f be a one-way permutation with non-uniform trapdoors. We
define thesingleton encryption schemeEf ,Df for f as follows: Letpkk := 1k and skk := tk, where
tk denotes the trapdoors of the functionf . For x ∈ {0, 1}, we haveEf (pk , x) := (f(r1), r2, (r1 ·
r2) ⊕ x) where r1, r2 are uniformly random from{0, 1}|pk |. For x ∈ {0, 1}∗, we haveEf (pk , x) :=
(Ef (pk , x1), . . . , Ef (pk , x|x|)).

The corresponding (deterministic) decryption algorithmDf proceeds as follows: Upon input
(pk , sk , (c1, r2, c2)) wheresk is a circuit and(c1, r2, c2) the encryption of a single bit, the decryption algo-
rithm first verifies thatf(sk(c1)) = c1 and that|c1| = |pk |. If so, it outputs(sk(c1) · r2) ⊕ c2. Otherwise,
it outputs⊥. The encryption of multiple bits is handled by decrypting each bit individually (with output⊥ if
one of the decryptions fails).

The set of valid public keys ofEf for security parameterk is hence{pkk}; consequentely the public key
generation algorithm is trivial. The corresponding secret-keysskk, i.e., the trapdoors off , are guaranteed to
exist, but they are not efficiently computable by a uniform adversary. We haveDf (pk k, sk k, Ef (pkk,m)) =
m for all m by construction; moreover,Df (pkk, sk , c) = m 6= ⊥ for some (possibly invalid) secret keysk
impliesDf (pkk, skk, c) = m since the checks performed byDf guaranteesk(c1) = skk(c1).

The following lemma states that the construction given above indeed results in an IND-CPA secure
encryption scheme, at least against uniform adversaries:

Lemma 2. Letf be a one-way permutation with non-uniform trapdoors and letEf be the singleton encryp-
tion scheme forf . ThenEf is IND-CPA secure against uniform adversaries in the following sense: For all
uniform probabilistic polynomial-time algorithmsA1, A2, we have that

Pr
[

(m0,m1, z)← A1(1
k), b

$
← {0, 1}, c ← Ef (pkk,mb) : A2(1

k, c, z) = b ∧ |m0| = |m1|
]

is negligible ink.

A proof of Lemma 2 can be found in [Gol04, Section 5.3.4.1]. Although this proof applies to a slightly
different definition of public-key encryption where the public and secret keys are chosen by an explicit key
generation algorithm, the proof carries over, mainly because the secret keys are not used in the definition of
IND-CPA security.

3.2 Proofs of Content

We now introduce the novel notion of a non-interactive proofof content. Intuitively, a proof of content is a
non-interactive proof system that proves that a given ciphertext c is the encryption of some plaintextm that
fulfills some predicateπ.

We first introduce some additional notation: Given an encryption scheme(E ,D) with deterministic
decryption, a Boolean circuitπ, a ciphertextc, a public keypk and a private keysk , let πpk ,sk [c] := true if
and only ifm := D(pk , sk , c) 6= ⊥ andπ(m) = 1, and letπpk [c] = true if there exists a secret keysk such
thatπpk ,sk [c] = true.
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Definition 4 (Non-Interactive Proofs of Content).A non-interactive proof of content for an encryption
scheme(E ,D) (whereD is deterministic) consists of a polynomial-time proverP and a polynomial-time
verifier V such that the following holds:

– Polynomial length.There exists a polynomialp such that for everyπ, c, pk , sk , and k, we have
|P (1k, π, c, pk , sk)| ≤ p(|(1k, π, c, pk , sk)|).

– Completeness.There is a negligible functionµ such that for everyπ, c, pk andsk satisfyingπpk ,sk [c] =
true and for everyk, we have

Pr
[

V (1k, pk , π, c, P (1k , π, c, pk , sk )) = 0
]

≤ µ(k).

– Soundness.There is a negligible functionµ such that for everyπ, c, andpk satisfyingπpk[c] = false

and for everyk and every stringN , we have

Pr
[

V (1k, pk , π, c,N) = 1
]

≤ µ(k).

So far, a proof of content can be quite easily realized by revealing the secret key of the encryption scheme.
This of course is not satisfying; hence we need an additionalsecrecy property. We cannot expect the proof
system to be zero-knowledge (since it is non-interactive without a common reference string), but we can
require that a proof will not help us to extract the plaintextfrom the ciphertextm (which would be clearly
violated if we learned the secret key). We will call this property content-hiding.

We now define content-hiding proofs of content. This notion will crucially depend on the notion of a
valid public key of a given encryption scheme, and of the notion of the corresponding secret key. The notion
of a valid public key and corresponding secret key has a natural meaning for most public-key cryptosystems,
but it may not be well-defined in general. However, in the remainder of the paper we will only consider the
encryption scheme from Definition 3 where a public key is valid if and only if it has the form1k, and where
the secret key corresponding to a given public key is uniquely determined astk. So for the sake of readability
we abstain from formally specifying what a valid public key and the corresponding secret key are.

Definition 5 (Content-Hiding Proofs of Content). A non-interactive proof of content(P, V ) for an en-
cryption scheme(E ,D) is calledcontent-hidingif the following holds:

Let G be any polynomial-time algorithm that upon input1k outputs a valid public keypk for E , a
messagem ∈ {0, 1}∗, a circuit π and some auxiliary informationz ∈ {0, 1}∗. Let A be any polynomial-
time algorithm such that

Pr
[

(pk ,m, π, z)← G(1k), c← E(pk ,m), N ← P (1k, π, c, pk , sk),

m′ ← A(1k, pk , c, π, z,N) : m = m′
]

is not negligible ink, wheresk denotes the secret key corresponding topk .
Then there exists a polynomial-time algorithmS outputting a list of strings, such that

Pr
[

(pk ,m, π, z)← G(1k), c← E(pk ,m), M ′ ← S(1k, pk , c, π, z) : m ∈M ′
]

.

is not negligible ink.

While the definition of content-hiding proof is similar to that of witness-hiding proofs, there is an im-
portant difference: Witness-hiding proofs guarantee thatthe witness cannot be guessed if the statement is
chosen according to some fixed distribution, while we require that the content-hiding property holds forany
efficiently sampleable distribution on the messagesm. Furthermore, a witness-hiding proof only guarantees
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that the witness is not disclosed as a whole, while we only require that themessagem is not disclosed as
a whole; the latter requirement is weaker since a witness would consist ofm and the randomness used for
encryption.

The existence of content-hiding proofs of content constitutes a novel cryptographic assumption. We did
not succeed in reducing it to existing assumptions, but we show that at least there is an oracle relative to
which this is possible.

Lemma 3. Assume that trapdoor one-way permutations with dense public keys exist that are secure against
non-uniform probabilistic polynomial-time adversaries.Then there exists an oracleO relative to which
content-hiding proofs of content with deterministic verifiers exist for any encryption scheme(E ,D).

The proof of this lemma is given in subsection A.2. The proof of Lemma 3 establishes the following slightly
stronger statement: choosing a random oracle entails content-hiding proofs of content with probability one.
Hence the following conjecture is again justified by the random oracle heuristic:

Conjecture 2.Let R be a sufficiently unstructured efficiently computable function. Then usingR in the
construction of the proof of Lemma 3 yields content-hiding proofs of content with deterministic verifiers.

In the next section we will need both the existence of one-waypermutations with non-uniform trapdoors as
well as of content-hiding proofs of content. We additionally use some standard complexity assumptions. All
assumptions used are summarized in the following statement:

Assumption 1 There exist a one-way function with non-uniform trapdoorsf (Definition 2) and a content-
hiding proof of content with a deterministic verifier4 for the singleton encryption schemeEf for f

(Definition 3).
Further, we assume the existence of one-way functions secure against non-uniform adversaries and the

existence of a keyed family of hash functions that is collision-resistant against non-uniform adversaries.

4 Limits of Constructive Security Proofs

Based on the definitions and assumptions from the preceding sections, we are now ready to show the exis-
tence of an existentially secure argument system that does not have a constructive security proof.

In the following, letf be a length-regular one-way function with non-uniform trapdoors, letEf be the
singleton encryption scheme forf , and let(P ∗, V ∗) denote a content-hiding proof of content forEf . Let
(P †, V †) be a computational zero-knowledge proof of knowledge, which can be constructed from one-way
functions secure against non-uniform polynomial-time adversaries (see e.g., [Gol01, Section 4.7.3]). When
passing an algorithmA as argument to a function or algorithm, we assume thatA is encoded as a circuit in
some canonical way. LetH be the description of a function from{0, 1}∗ to {0, 1}∗. When consideringH
as a circuit, we will always mean the circuit describing the functionH restricted to the domain{0, 1}k .

Stating the construction in a concise manner necessitates afew auxiliary definitions:
– Let πH(x1, x2) := true if and only if x1, x2 ∈ {0, 1}

k , x1 6= x2 andH(x1) = H(x2).
– Let γ(H, c,N) := true if and only if V ∗(1k, pk k, πH , c,N) = 1.
– Let η(H,σ, c,N,w) := true if and only if σ(w) = 1 or γ(H, c,N) = true.
– Let lc(k) := |Ef (1k, 12k)| denote the length of an encryption of a2k-bit plaintext.

4 We could also weaken the assumption slightly by allowing a probabilistic verifier. While our results hold as well for probabilistic
verifiers, we have chosen to use this slightly stronger formulation since it makes the separating example and the proof easier.
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– Let lP be a polynomial such that for allk ∈ N andc ∈ {0, 1}lc(k), the valuelP (k + |H|) is an upper
bound on|P ∗(1k, πH , c, tk)| where |H| denotes the size of the circuitH and tk is the non-uniform
trapdoor forf (cf. Definition 2). Such a polynomiallP exists, since there are polynomial upper bounds
on all arguments ofP ∗, andP ∗ satisfies the polynomial length property from Definition 4.

– Let Lη be the language consisting of all(H,σ) such that there exist a triple(c,N,w) with |c| ≤ lc(k)
and |N | ≤ lP (k + |H|) that satisfiesη(H,σ, c,N,w) = true. Obviously,Lη ∈ NP. Note that if
σ(w) = 1, thenw is a witness for(H,σ) ∈ Lη.

Using this notation, we can now describe the protocol that will have an existential security proof, but that
will provably not have a constructive proof:

Definition 6 (The Separating Argument System).The proof system(PH , V H) whereH may be a keyed
or unkeyed hash function, is defined as follows:

– The proverPH is invoked with input(1k, σ, w) whereσ is a Boolean circuit andw is an assignment
such thatσ(w) = 1. The verifier is invoked with input(1k, σ).

– The proverPH invokesP † on security parameter1k, Lη-instance(H,σ) and witnessw; here H is
treated as a circuit mapping{0, 1}k to {0, 1}∗.

– The verifierV H invokesV †(1k, σ) to verify the proof given by the proverPH .

The notation introduced in front of Definitions 4 and 6 (e.g.,πpk [c], γ, P †, etc.) will be used in the
following proofs without explicit reference.

We have assumed in Assumption 1 thatV ∗ is deterministic. IfV ∗ was probabilistic, we would have
to change the above proof system as follows: First, the prover commits to a witness(c,N,w). The prover
and the verifier then perform a coin-toss to choose a random tapeR for V ∗. Finally the prover proves that
σ(w) = 1 or that the verifierV ∗ accepts with random tapeR. We have opted to consider the case of a
deterministic verifierV ∗ to make the presentation more readable.

Theorem 1. Under Assumption 1, ifHK is a keyed hash-function that is secure against non-uniformadver-
saries then the proof system(PH , V H) is a (non-uniformly secure) computational zero-knowledgeargument
of knowledge for SAT. (We assume the keyK to be chosen by some key generation algorithmK(1k).)

The proof is given in Appendix A.3.

Theorem 2. Under Assumption 1, there exists no constructive security proof C that (PH , V H) is an argu-
ment.

In particular, the theorem implies that no constructive security proof exists that(PH , V H) is a computa-
tional zero-knowledge argument of knowledge.

Proof. Assume for contradiction that a constructive security proof C exists that(PH , V H) is an argument.
Let f be a one-way permutation with non-uniform trapdoors and let{H̃K}K∈K be a keyed family of

hash functions that is one-way against non-uniform adversaries. LetGH̃ be the key generation algorithm for
H̃K , and assume w.l.o.g. that forK ← GH̃(1k) the functionH̃K maps from{0, 1}∗ to {0, 1}k.

We first construct a keyed family{Ha,b,K}(a,b,K)∈Y ×K of hash functionsHa,b,K : {0, 1}∗ → {0, 1}k+1

with Y :=
⋃

Yk andYk := {(a, b) : a, b ∈ {0, 1}k , a 6= b} as follows:

Ha,b,K(x) :=











0‖H̃K(x), |x| 6= k,

1‖f(x), |x| = k, f(x) 6= a,

1‖b, |x| = k, f(x) = a.

for a, b, x ∈ {0, 1}k .
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It is easy to see that the only collision(x, x′) of Ha,b,K that satisfies|x| = |x′| = k is (f−1(a), f−1(b)).
Hence finding such a collision ofHa,b,K for random(a, b) implies invertingf ata. Finding collisions(x, x′)
with |x| 6= k or |x′| 6= k breaks the collision-resistance of̃HK . SoHa,b,K is collision-resistant against
uniform polynomial-time adversaries.

In the following, we writek-collision to denote a collision(x, x′) with |x| = |x′| = k. Then there exists
only a singlek-collision (x, x′) of Ha,b,K (wherek = |a| = |b|).

Letσfalse denote some fixed unsatisfiable circuit. LetP̃ be a prover that upon input(1k,H, c,N) invokes
P † on security parameter1k, Lη-instance(H,σfalse) and witness(c,N,w).

By construction of(PH , V H) and since(P †, V †) is complete, there exists a negligible functionµ1 such
that for all c,N with |c| ≤ lc(k) and |N | ≤ lP (k + |H|) such thatN is a valid proof forπpkk

H [c] = true

(i.e., such thatV ∗(1k, pk k, πH , c,N) = 1), we have

Pr
[

〈P̃ (1k,H, c,N), V H(1k, σfalse)〉 = 1
]

≥ 1− µ1(k). (1)

Consider the following gameG0:

(ã, b̃)
$
← Yk, a := f(ã), b := f(b̃), K ← GH̃(1k), H := Ha,b,K , (2)

c← Ef (pkk, (ã, b̃)), N ← P ∗(1k, πH , c, pk k, sk k), (3)

(â, b̂)← C(1k,H, P̃ (1k,H, c,N), σfalse ). (4)

That is, first, in (2) we construct a hash-functionH such that we know the (only)k-collision (ã, b̃). Then
in (3) we construct an encryptionc of thatk-collision and a proof thatc indeed contains ak-collision (i.e.,
thatπpkk

H [c] = true). Finally, in (4) we invoke the generic security proofC with a description of the hash-
functionH, with a description of̃P (instantiated with input(1k,H, c,N)) and with the SAT-instanceσfalse .

By the completeness of(P ∗, V ∗), there is a negligible functionµ2 such that inG0 the following holds:
Pr[V ∗(1k, pkk, πH , c,N) = 1] ≥ 1 − µ2(k). Further, by definition oflc and lP it is |c| ≤ lc(k) and
|N | ≤ lP (k + |H|). Then using (1) we get

Advarg
k := Pr

[

〈P̃ (1k,H, c,N), V H(1k, σfalse)〉 = 1
]

≥ 1− µ1(k)− µ2(k)

whenH, c andN are chosen as in gameG0.
Since σfalse is not satisfiable, this violates the soundness of the argument system(PH , V H). So

by the definition of constructive security proofs,C should be able to extract a collision given1k, H,
P̃ (1k,H, c,N) and σfalse . More exactly, letp be a polynomial such thatp(k) bounds the length of
(1k,H, P̃ (1k,H, c,N), σfalse ). Such a polynomial exists, sinceH is constructed by a polynomial-time algo-
rithm andP̃ runs in polynomial time. Then there is ac > 0 and a negligible functionµ5 such that

Pr
[

(â, b̂) is a collision ofH
]

≥

(

Advarg
k

p(k)

)c

− µ5(k) ≥

(

1− µ1(k)− µ2(k)

p(k)

)c

− µ5(k) =: ν(k).

Thenν is not negligible. On the other hand, sinceH̃K is collision-resistant against non-uniform adversaries,
and(â, b̂) is computed by non-uniform polynomial-time algorithms in (2–4),5 there is a negligible function
µ4 bounding the probability that(â, b̂) is a collision ofH̃K . Since by construction ofH := Ha,b,K , the only
collision ofH that is not a collision ofH̃K is thek-collision (f−1(a), f−1(b)) = (â, b̂), it follows that

Pr
[

(â, b̂) = (ã, b̃)] ≥ ν(k)− µ4(k). (5)

5 The non-uniformity stems from the appearance ofskk in gameG0.
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Let now A(1k, pk , c, π,H,N) := C(1k,H, P̃ (1k,H, c,N), σfalse ). SinceC and P̃ are polynomial-time
algorithms, so isA. Further letG(1k) be an algorithm that choosesm := (ã, b̃) andH as in gameG0 and
then outputs(pkk,m, πH ,H). ThenG runs in polynomial-time, too. Then the following gameG1 is just a
rewriting of gameG0:

(pk ,m, π,H)← G(1k), c← Ef (pk ,m), N ← P ∗(1k, π, c, pk , sk), m′ ← A(1k, pk , c, π,H,N)

with (â, b̂) := m′ and withsk being the secret key corresponding topk . So by (5) it follows thatPr[m =
m′] ≥ ν(k) − µ4(k) in gameG0. This is not negligible. Since(P ∗, V ∗) is content-hiding, it follows that
there is a polynomial-time simulatorS such that

ν2(k) := Pr
[

(pk ,m, π,H)← G(1k), c← Ef (pk ,m), M ′ ← S(1k, pk , c, π,H) : m ∈M ′
]

(6)

is not negligible. SinceEf is IND-CPA by Lemma 2, and the algorithms in (6) are all uniform polynomial-
time algorithms, we can replaceEf (pk ,m) by Ef (pk , 02k) (since|m| = 2k). (For this, note thatG chooses
pk := pkk.) Then, for some negligible functionµ3, we have

Pr[(pk ,m, π)← G(1k), c← Ef (pk , 02k), M ′ ← S(1k, pk , c, π,H) : m ∈M ′] ≥ ν2(k)− µ3(k)

Since given a description ofHa,b,K with a = f(ã) andb = f(b̃), we can efficiently verify whether for some
m′ we havem′ = (ã, b̃), we can modifyS so that it directly outputsm = (ã, b̃) if that m is in M ′. Call the
resulting algorithmS′. By substituting the definition ofG we get

Pr[(ã, b̃)
$
← Yk, a := f(ã), b := f(b̃), K ← GH̃(1k),

(â, b̂)← S′(1k, pk k, Ef (pk k, 0
2k), πHa,b,K

,Ha,b,K) :

(â, b̂) = (ã, b̃)] ≥ ν2(k)− µ3(k).

Let the algorithmT (1k, a) perform as follows: First, it choosesb uniformly from {0, 1}k \ {a} and K

usingGH̃(1k). Then it executes(â, b̂) ← S′(1k, pk k, Ef (pkk, 0
2k), πHa,b,K

,Ha,b,K) and outputŝa. Then
the previous probability can be rewritten as

Pr[ã
$
← {0, 1}k , â := T (1k, f(ã)) : ã = â] ≥ ν2(k)− µ3(k).

Sinceν2 − µ3 is not negligible andT is a uniform polynomial-time algorithm, this is a contradiction to f

being one-way against uniform polynomial-time adversaries. Hence our assumption thatC is a constructive
security proof was wrong. ut

A Postponed proofs

A.1 Proof of Lemma 1

Proof. Let {gK} be a family of trapdoor permutations with dense public keys.Let ` be the polynomially
bounded function such thatgK is a permutation on{0, 1}k for everyK ∈ {0, 1}`(k).

Let O be the set of all functionsO such thatO(x) ∈ {0, 1}`(k) for x = 1k andO(x) = 0 otherwise.
(Intuitively, O is the set of all oracles that assign a single keyKk ∈ {0, 1}

`(k) to each security parameter
k.) LetD be the uniform distribution onO. In particular, ifO is chosen according toD, thenO(1k) is uni-
formly distributed on{0, 1}`(k). (So, intuitively,D represents the distribution resulting from independently
choosing a fresh key for each security parameterk).
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For a functionO ∈ O, we define the permutationfO as follows:

fO(x) := gO(1k)(x).

By construction,fO is a length-preserving permutation on{0, 1}∗ (if we additionally setfO(λ) := λ where
λ is the empty word). And sincegK can be efficiently computed, given access to the oracleO we can
also computefO efficiently. Furthermore, since{gK} is a family oftrapdoorpermutations, for each public
keyO(1k) there exists a polynomial-size trapdoortk such that for allx ∈ {0, 1}k , we havetk(fO(x)) =
tk(gO(1k)(x)) = x.

To conclude the proof, it is left to show that there exists an oracleO ∈ O such thatfO is indeed one-way.
We will even show more: IfO is chosen with distributionD, then with probability1 the permutationfO is
one-way.

For any oracle Turing machineA, we defineÃ to be the Turing machine that upon input(1k,K, y)
simulates the following process: First, an oracleO is chosen according to distributionD. Let Õ(1k) := K

andÕ′(x) = O(x) otherwise. TheñA simulatesAÕ(1k, y). In other words,Ã simulatesA with a random
oracleO with the only exception thatO(1k) is the key thatÃ got as input.

Note that ifA is polynomial-time, so isÃ, since a randomO can be simulated by choosing a random
K ∈ {0, 1}`(k) on demand upon a queryO(1k).

We define the following probabilities (whereA denotes a Turing machine):

µA(k) := Pr[K
$
← {0, 1}`(k), x← {0, 1}k , y ← gK(x),

x′ ← Ã(1k,K, y) : gK(x) = gK(x′)],

µO
A(k) := Pr[x← {0, 1}k , y ← fO(x), x′ ← AO(1k, y) :

fO(x) = fO(x′)],

αA(k) := Pr
O

[µO
A(k) ≥ k2µA(k)],

βA(k) := Pr
O

[µO
A(k̂) ≥ k̂2µA(k̂) for somek̂ ≥ k],

βA(∞) := Pr
O

[µO
A(k̂) ≥ k̂2µA(k̂) for infinitely manyk̂].

HerePrO denotes the probability withO chosen according toD.
By construction off , Ã andD we have

µA(k) = Pr
O

[x← {0, 1}k , y ← fO(x), x′ ← AO(1k, y) : fO(x) = fO(x′)] = E
O
[µO

A(k)].

So using the Markov inequality, we get

αA(k) ≤
EO[µO

A(k)]

k2µA(k)
=

1

k2
.

Hence we have

βA(k) ≤

∞
∑

k̂=k

αA(k) ≤

∞
∑

k̂=k

1

k̂2
−→
k→∞

0.

For anyk we have that if some predicateP (k̂) holds for infinitely manŷk, then it also holds for somêk ≥ k.
SoβA(∞) ≤ βA(k)→ 0, thusβA(∞) = 0.
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Let A be the set of all uniform probabilistic polynomial-time Turing machinesA. ThenA is countable.
Further, sinceg is one-way by assumption, the functionµA is negligible for allA ∈ A. We then have

Pr
O

[fO is not one-way relative toO]

= Pr
O

[∃A ∈ A : µO
A is not negligible]

(∗)

≤ Pr
O

[∃A : µO
A(k) ≥ k2µA(k) for infinitely manyk]

(∗∗)

≤
∑

A∈A

βA(∞) = 0.

Here (∗) uses the fact thatµA and therefore alsok2µA is negligible forA ∈ A, and (∗∗) makes sense
becauseA is countable.

So with probability1, the functionfO is one-way relative to the oracleO. ut

A.2 Proof of Lemma 3

Proof. If one-way trapdoor permutations with dense public keys exist then there is a non-interactive proof
system(P, V ) for SAT in the common reference string model that is adaptively sound, adaptively computa-
tional zero-knowledge, has perfect completeness, a polynomial-time prover and a deterministic polynomial-
time verifier (cf. e.g., [Gol01, Section 4.10.3.2]).6 Further, the CRS is a uniformly chosen string (due to the
dense public keys). In the following, we will assume the CRSR to be a string of infinite length (i.e., an
element of{0, 1}N). Of course, any polynomial-time Turing machine will read only a finite prefix ofR.

We recall the definition of adaptive soundness:

Pr[R← {0, 1}N : ∃σ ∈ SAT{
n, N ∈ {0, 1}∗ such thatV (1k, R, σ,N) = 1] is negligible ink + n.

HereSATn denotes the set of all yes-instances ofSAT of length at mostn, andSAT{
n denotes all strings of

length at mostn that are not yes-instances ofSAT. (We differentiate between the lengthn and the security
parameterk to make presentation simpler later on.)

The definition of adaptive computational zero-knowledge isthe following: There are probabilistic
polynomial-time Turing machinesS1 and S2 (constituting the simulator) such that the following holds:
For any (possibly unbounded) algorithmX that upon input(1k) outputs a triple(z, x,w) of polynomial
length consisting of some auxiliary informationx, a SAT-instancex and a witnessw for x, the following
two random processes are computationally indistinguishable in k:

R
$
← {0, 1}N, (z, x,w) ← X(1k), N ← P (1k, R, x,w) : (R, z, x,N)

and

(R, t)← S1(1
k), (z, x,w)← X(1k), N ← S2(1

k, x, t) : (R, z, x,N).

Note that there is some abuse of notation in the preceding definition: The Turing machineS1 outputs an
infinite stringR ∈ {0, 1}N, which is of course impossible. However, since only a polynomial prefix ofR

6 Note that only the verifier is guaranteed to be computationally bounded.

14



is used in the remainder of the definition, we can assume thatS1 simply chooses a polynomial prefix of
sufficient length.

Let O be the set of all functionsO from Σ∗ to {0, 1} with the property thatf(x) = 0 if x has not the
form x = 1k. (Intuitively, O ∈ O is an oracle assigning a single bit to each security parameter k.) LetD
be the uniform distribution onO. Each oracleO ∈ O induces a CRSR(O) ∈ {0, 1}N with Ri := O(1i)
whereRi is thei-th bit of R(O). Note that the mappingO 7→ R(O) is a one-to-one mapping, and that ifO
is chosen according toD, thenR(O) is uniformly distributed on{0, 1}N.

Let now(E ,D) be an encryption scheme. (Possibly even making use of the oracleO.) We now construct
a proof of content(PO

∗ , V O
∗ ) for (D, E). For a circuitπ and public and secret keyspk , sk and an encryption

c, let πpk ,sk [c] andπpk [c] be defined as in Definition 4. We can then considerπpk [c] as a SAT-instance, and
a secret keysk with πpk ,sk [c] = true as a corresponding witness. We then define

PO
∗ (1k, π, c, pk , sk) := P (1k, R(O), πpk [c], sk ),

V O
∗ (1k, pk , π, c,N) := V (1k, R(O), πpk [c], N).

That is, to showπpk [c] = true, the proverPO
∗ uses the proverP with R(O) as the CRS.V O

∗ then verifies
that proof usingV .

Note that althoughR(O) has infinite length, any prefix of polynomial length can be computed in
polynomial-time (given oracle-access toO). SoV O

∗ runs in oracle polynomial time sinceV runs in polyno-
mial time. The same holds forPO

∗ .
There is an additional subtlety we have to consider. If the decryption algorithmD uses the oracleO, it is

not immediately clear thatπpk [c] can be expressed as a SAT-instance, since the circuit evaluating πpk ,sk [c]
accesses the oracleO. However, w.l.o.g., we can assume thatD queries the oracle only with queries of the
form O(1m) (all other queries return0 anyway). Further, there is a polynomial upper boundM on m in
these queries. We can therefore hardcodeO(10), . . . ,O(1M ) into the circuit representingπpk ,sk [c]. In this
form, πpk [c] can indeed be considered as a SAT-instance.

We are now going to show that withO chosen according to the distributionD, with probability1 the
proof system(PO

∗ , V O
∗ ) is a content-hiding proof of content.

For anyO ∈ O, the polynomial-length property (Definition 4) of(PO
∗ , V O

∗ ) follows from the corre-
sponding property of(P, V ). Furthermore, since(P, V ) has perfect completeness, i.e., for any CRS the
proof succeeds, the completeness of(PO

∗ , V O
∗ ) follows for anyO ∈ O.

It is left to show that(PO
∗ , V O

∗ ) satisfies the soundness property and the content-hiding property with
probability1.

First, we show that(PO
∗ , V O

∗ ) is sound with probability1. For someR ∈ {0, 1}∗, let Ṽ R
∗ be defined as

is V O
∗ , except that̃V R

∗ usesR as the CRS (instead ofO(1k)). Then we define the following probabilities:

µ(k) := Pr[R← {0, 1}N : ∃pk , π, c,N ∈ Σ∗ such that

πpk [c] = false andV (1k, R, πpk [c], N) = 1],

µO(k) := Pr[∃pk , π, c,N ∈ Σ∗ such that

πpk [c] = false andV O
∗ (1k, pk , π, c,N) = 1]

α(k) := Pr
O

[µO(k) ≥ k2µ(k)],

β(k) := Pr
O

[µO(k̂) ≥ k̂2µ(k̂) for somek̂ ≥ k],

β(∞) := Pr
O

[µO(k̂) ≥ k̂2µ(k̂) for infinitely manyk̂].
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Since(P, V ) is adaptively sound (see above),µ is negligible ink. Furthermore, by construction ofV O
∗ , it is

µ(k) = Pr
O

[∃pk , π, c,N ∈ Σ∗ such that

πpk [c] = false andV (1k, R(O), πpk [c], N) = 1]

= E
O
[µO(k)].

Like in the proof of Lemma 1, it followsα(k) ≤ 1
k2 and henceβ(k) ≤

∑∞
k̂=k

1
k̂2
→ 0 and thusβ(k) ≥

β(∞) = 0. We saw thatµ is negligible. So ifµO is negligible we haveµO(k̂) ≥ k̂2µ(k) infinitely often.
ThusµO is negligible with probability1 − β(∞) = 1. Therefore(PO

∗ , V O
∗ ) fulfills the soundness property

(Definition 4) with probability1.
It is left to show that(PO

∗ , V O
∗ ) is also content-hiding with probability1.

For a CRSR ∈ {0, 1}N, letO(R) be the uniqueO ∈ O with R(O) = R. Given oracle Turing machines
G andA, we then define the following probabilities:

µ̂A,G(k) := Pr[R
$
← {0, 1}N, (pk ,m, π, z)← GO(R)(1k), c← EO(R)(pk ,m),

N ← P (1k, R(O), πpk [c], sk ),m′ ← AO(R)(1k, pk , c, π, z,N) : m = m′],

µ̂O
A,G(k) := Pr[(pk ,m, π, z)← GO(1k), c← EO(pk ,m),

N ← PO
∗ (1k, π, c, pk , sk), m′ ← AO(1k, pk , c, π, z,N) : m = m′].

α̂A,G(k) := Pr
O

[µ̂O
A,G(k) ≥ k2µ̂A,G(k)],

β̂A,G(k) := Pr
O

[µ̂O
A,G(k̂) ≥ k̂2µ̂A,G(k̂) for somek̂ ≥ k],

β̂A,G(∞) := Pr
O

[µ̂O
A,G(k̂) ≥ k̂2µ̂A,G(k̂) for infinitely manyk̂].

By definition ofO(R) andR(O), and by construction ofPO
∗ , we see that̂µA,G(k) = EO[µ̂O

A,G(k)]. Like

above and in the proof of Lemma 1, it followŝαA,G(k) ≤ 1
k2 and hencêβA,G(k) ≤

∑∞
k̂=k

1
k̂2
→ 0 and thus

β̂A,G(k) ≥ β̂A,G(∞) = 0.
Then, since(P, V ) is adaptively computationally zero-knowledge, for any polynomial-timeA,G there

exist probabilistic polynomial-time machinesS1, S2 such that

σ̂A,G(k) := Pr[(R, t)← S1(1
k), (pk ,m, π, z)← GO(R)(1k), c← EO(R)(pk ,m),

m′ ← S2(1
k, πpk [c], z,N) : m = m′]

is negligibly close tôµA,G, i.e., |µ̂A,G(k) − σ̂A,G(k)| is negligible.
So if σ̂A,G is negligible, so iŝµA,G, and therefore alsôk2µ̂A,G(k̂). So if µ̂O

A,G(k̂) < k̂2µ̂A,G(k̂) for all

but finitely manŷk (which happens with probability1− β̂A,G(∞) = 1), the functionµ̂O
A,G is negligible, too.

So for every polynomial-timeA andG, we have with probability1 that if µ̂O
A,G is not negligible, so is

σ̂A,G. Since there are only countably manyA andG, the probability is1 that for randomO we have that if
µ̂O

A,G is not negligible, so iŝσA,G.

By Definition 5,(PO, V O) is content-hiding if for all polynomial-timeA andG from the fact that̂µO
A,G

is not negligible, it follows that̂σO
A,G is not negligible. So with probability1, (PO, V O) is content-hiding.

So we have shown, that for any(E ,D), the probability is1 that the corresponding proof system(PO, V O)
is a content-hiding proof of content. Since there are only countably many different encryption schemes
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(E ,D), it follows that with probability1 (over oraclesO chosen according toD) we have that for each
encryption scheme(E ,D) there exists a content-hiding proof of content. ut

A.3 Proof of Theorem 1

Proof. Since(P †, V †) is a computational zero-knowledge proof, the computational zero-knowledge prop-
erty and the completeness of(PH , V H) follow from the construction.

We show that(PH , V H) is an argument of knowledge, i.e., we construct a knowledge extractorE such
that there exists a polynomialq such that for any non-uniform polynomial-time proverP̃ and any sequence
σ of SAT-instances of polynomial length, there is a negligible functionµ such that the following holds for
eachk ∈ N:

Pr[K ← K(1k) : EP̃ (1k,K)(1k,HK , σk) is a SAT-witness forσk]

≥
1

q(k)
Pr[K ← K(1k) : 〈P̃ (1k,K), V HK (1k, σk)〉 = 1]− µ(k). (7)

HereEP̃ (1k ,K)(1k,HK , σk) denotes the extractorE with black-box access tõP (1k,K) and that is given a
description ofHK .

Let E† be the knowledge-extractor of(P †, V †). Then there is a polynomialq such that for every non-
uniform polynomial-time prover̂P and every sequence of polynomial-sizedLη-instances(Hk, σk) there
exists a negligible functionν such that for allk the following holds:

Pr[E
P̂ (1k)
† (1k,Hk, σk) is anLη-witness for(Hk, σk)]

≥
1

q(k)
Pr[〈P̂ (1k), V †(1k,Hk, σk)〉 = 1]− ν(k). (8)

HereEP̂ (1k) denotes the extractorE† with black-box access toHK andP̂ (1k,K).
We construct the knowledge-extractorE as follows: When invoked with black-box access toP̃ and with

input (1k,H, σ), it invokes(c,N,w) ← EP̃
† (1k,H, σ) and then returnsw.

It is left to show thatE satisfies (7). Let̃P be a non-uniform polynomial-time prover as in (7) andσ a
sequence of SAT-instances of polynomial length. LetK be a sequence of keys for the hash-functionH. By
(8) and by definition ofLη, there exists a negligible functionν such that

Pr[(c,N,w) ← E
P̃ (1k,Kk)
† (1k,Hk, σk) : η(HKk

, σk, c,N,w) = true]

≥
1

q(k)
Pr[〈P̃ (1k,Kk), V

†(1k,HKk
, σk)〉 = 1]− ν(k) (9)

Since this holds for every sequenceK of keys, we have for some negligibleν and allk ∈ N:

Pr[K ← K(1k), (c,N,w) ← E
P̃ (1k ,K)
† (1k,HK , σk) : η(HK , σk, c,N,w) = true]

≥
1

q(k)
Pr[K ← K(1k) : 〈P̃ (1k,K), V †(1k,HK , σk)〉 = 1]− ν(k). (10)

(Otherwise we could simply use the worst-case sequence of keys to contradict (9).)
Let µ1 be defined as follows:

µ1(k) := Pr[K ← K(1k), (c,N,w)← E
P̃ (1k ,K)
† (1k,HK , σk) : γ(HK , c,N) = true].
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By definition, γ(HK , c,N) = true is equivalent toV ∗(1k, pkk, πHK
, c,N) = 1 which in turn im-

plies π
pkk

HK
[c] = true. Hence there exists a secret keysk such thatDf (pk k, sk , c) =: m 6= ⊥ and

πHK
(m) = true. SinceDf (pk k, sk , c) = m 6= ⊥ impliesDf (pk k, sk k, c) = m by construction, it fol-

lows thatπHK
(Df (pkk, skk, c)) = true. We therefore have

µ1(k) ≤ Pr[K ← K(1k), (c,N,w)← E
P̃ (1k ,K)
† (1k,HK , σk),

m← Df (pkk, skk, c) : πHK
(m) = true].

Since (c,N,w) ← E
P̃ (1k ,K)
† (1k,HK , σk), m ← Df (pk k, sk k, c) can be computed by a non-uniform

polynomial-time algorithm (given1k andK), and sinceπHK
(m) = true implies thatm encodes a col-

lision of HK , we have constructed a non-uniform polynomial-time algorithm that finds collisions ofHK

with probability at leastµ1. Since by assumption,HK is collision-resistant against non-uniform polynomial-
time adversaries, this implies thatµ1 is negligible.

By definition, we haveη(HK , σk, c,N,w) = true if and only if σk(w) = 1 or γ(HK , c,N) = true. So
using the definition ofE andV H we get

Pr[K ← K(1k), w← EP̃ (1k ,K)(1k,HK , σk) : σk(w) = 1]

= Pr[K ← K(1k), (c,N,w)← E
P̃ (1k ,K)
† (1k,HK , σk) : σk(w) = 1]

≥ Pr[K ← K(1k), (c,N,w)← E
P̃ (1k ,K)
† (1k,HK , σk) : η(HK , σk, c,N,w) = true]− µ1(k)

(10)

≥
1

q(k)
Pr[K ← K(1k) : 〈P̃ (1k,K), V †(1k,HK , σk)〉 = 1]− ν(k)− µ1(k).

=
1

q(k)
Pr[K ← K(1k) : 〈P̃ (1k,K), V HK (1k, σk)〉 = 1]− ν(k)− µ1(k). (11)

Settingµ := ν + µ1, this gives us (7) and thus shows that(PH , V H) is a (non-uniformly secure) computa-
tional zero-knowledge argument of knowledge. ut
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