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An attack on a group-based cryptographic scheme

Dennis Hofheinz and Dominique Unruh

Abstract. We give an attack on a public key encryption scheme suggested
by Shpilrain and Zapata. Experimental evidence shows that this attack is
practical and works for the proposed parameters. We give a way to repair the
encryption scheme so that our attack does not work anymore. However, we
also expose weak points of the scheme that do not seem to be repairable in an
obvious manner.

1. Introduction

Within the last years various attempts have been made to derive cryptographic
primitives from problems originating in combinatorial group theory (see, e. g.,
[Wag84, WM85, GZ91, AAG99, KLC+00, AAFG01, Shp04]). As a rel-
atively new approach, [Shp04, SZ04] propose a public key cryptosystem based on
metabelian groups. They claim that the security of their scheme is based on the
subgroup membership problem in the considered metabelian group.

In this contribution, we show that their scheme can be broken by a very e�cient
heuristic attack that bypasses solving the subgroup membership problem. This
attack uses that public key and ciphertext are transmitted as elements of a free
group instead of the considered metabelian group. With the original scheme, this
was necessary to allow for en- and decryption. We give a �x to this that allows to
have at least the ciphertext transmitted as an element of a metabelian group. With
this modi�cation, our attack does not work anymore. But since even with our �x,
the public key has to be transmitted as an element of a free group, a reduction
to the subgroup membership problem in a metabelian group seems not directly
possible. Furthermore, we also expose some additional weak points of the scheme
that are also present in the �xed version and do not seem to be easily removable.
At the moment, this does not constitute a complete break of the repaired scheme in
the sense of a successful attack, but indicates that further research might be needed
with respect to some parameters and possibly the proposed platform group.

Key words and phrases. Public key cryptography, metabelian groups.
Most of this work was done while the �rst author was with the Institut für Algorithmen und

Kognitive Systeme (IAKS), Lehrstuhl Prof. Beth at the Universität Karlsruhe.

c©0000 (copyright holder)

1



2 DENNIS HOFHEINZ AND DOMINIQUE UNRUH

Note. This paper refers to the version [Shp04, SZ04] of the Shpilrain-Zapata
cryptosystem that was presented at the Canadian Mathematical Society Win-
ter Meeting in December 2004. After presentation of our attack on that system
at [Hof05], however, the preprint [SZ04] was updated (see [SZ06]) with improve-
ments very similar to our suggestions, so that the original, unmodi�ed version
[SZ04] of the Shpilrain-Zapata system is no longer available online. Consequently,
our attack from Section 3 does not apply to the updated system [SZ06]; however,
the observation of weak points in Section 5 does.

2. The Shpilrain-Zapata Cryptosystem

Here, we present the public key cryptosystem of [Shp04]. To ease the things
to come, we do so in a slightly di�erent (but equivalent) form.

2.1. The System. First, we describe the system on an abstract level, and in
the next subsection, we then discuss some parameter suggestions made in [Shp04,
SZ04].

Let Fn+m be a free group with free generators x1, . . . , xn+m. Let R/Fn+m be a
normal subgroup of Fn+m that is invariant under arbitrary Fn+m-endomorphisms.
Then Fn+m := Fn+m/R is called relatively free.

So let for �xed n, m ∈ N such Fn+m, R,Fn+m be given. Computationally, here
any element from Fn+m is given by a free representative (i.e., a word in the free
generators xi and their inverses). Furthermore, any endomorphism α ∈ End(Fn+m)
is given by the images of the generators x1R, . . . , xn+mR under α, so in fact α is
represented by a vector of n + m elements from Fn+m.

In particular, say that two endomorphisms α, β ∈ End(Fn+m) are given in that
way by vectors (α1, . . . , αn+m), (β1, . . . , βn+m) ∈ Fn+m

n+m such that, e.g., αi is a free
representant of α(xiR). Then it is clear how to implement the composition α ◦ β:
simply substitute every occurence of xj (resp. x−1

j ) in every βi with αj (resp. α−1
j ).

Key generation: Choose ϕ ∈ Aut(Fn+m) together with its inverse ϕ−1

such that ϕ−1 cannot be e�ciently deduced from ϕ. (How such a ϕ
is chosen depends on the concrete choice of the underlying subgroup,
cf. [SZ06].) The public key for encryption is ϕ̂ := πn ◦ ϕ, where πn ∈
End(Fn+m) is the projection onto the �rst n generators (i.e., πn(xiR) =
xiR for 1 ≤ i ≤ n and πn(xiR) = 1 for n < i ≤ n + m). The secret key
for decryption is ϕ−1.

Encryption: A plaintext is an endomorphism w ∈ End(Fn+m) satisfying
w(xiR) = 1 for n < i ≤ n + m (such that w ◦ πn = w). Any such w is
encrypted as c := w ◦ ϕ̂ ∈ End(Fn+m).

Decryption: Decrypting of some c ∈ End(Fn+m) is done by w′ := c ◦ ϕ−1

such that in case of a legitimately generated ciphertext c = w ◦ ϕ̂ =
w ◦ πn ◦ ϕ = w ◦ ϕ, it holds w′ = c ◦ ϕ−1 = w ◦ ϕ ◦ ϕ−1 = w for the
decrypted plaintext.

There is a �ne point concerning decryption: as ϕ is not necessarily an auto-
morphism of Fn+m, and the equation ϕ ◦ ϕ−1 = id does not necessarily hold over
Fn+m, the free representants of original plaintext and decrypted ciphertext may
di�er (although they represent the same elements in Fn+m). Since as discussed we
represent Fn+m-endomorphisms by free group elements, the decrypted ciphertext
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must eventually be put into an Fn+m-normal form. So then, actually only the
normal form of w (but not its free representation) can be transmitted.

As a remark on this, there is no need to be able to interpret any given plaintext
message as a suitable normal form of an element from Fn+m. It su�ces to be able to
choose normal forms in a random way and then to encrypt the actual plaintext with
that randomness as a one-time-pad. More speci�cally, one could encrypt bitstrings
m with m 7→ (c,H(w)⊕m), where c = w ◦ϕ for a random w, H is a hash function
that maps vectors of normal forms to bitstrings, and ⊕ denotes the bitwise XOR.
(Of course, this simple construction results in a highly malleable scheme [DDN91],
but then again, e�cient constructions are known for converting such a scheme into
a non-malleable one, see, e.g., [FO99].)

2.2. Suggested Parameters. In [Shp04, SZ04], the following parameters
were suggested for implementing the above system. First, take n = 8 and m = 2,
such that Fn+m = F10 is the free group of rank 10. Let R = [[F10, F10], [F10, F10]],
such that Fn+m = Fn+m/R is the free metabelian group of rank 10.

We omit a description of the way ϕ̂ is chosen, as this is not important for our
attack. However, it is worthwhile to describe the Fn+m-normal form employed
during decryption. Namely, it is suggested to use the following normal form NF(z)
for a free representant z ∈ Fn+m of an element from Fn+m. First, consider z as an
element of the group ring ZFn+m. Let Foxi(z) denote the partial Fox derivative
with respect to xi.

1 Let Fox(z) = (Foxi(z)) be the vector of the n + m partial
Fox derivatives of z. Then NF(z) is simply the component-wise abelianization of

Fox(z), i.e., NF(z) =
(
Foxi(z)

)
where a denotes the abelianization of a.

3. Cryptanalysis

Let Fn+m be as before, and let ϕ̂ ∈ Aut(Fn+m) be a public key. Our goal is to
decipher a given ciphertext c = w ◦ ϕ̂ = w ◦ ϕ. We proceed in two steps: �rst, we
derive the abelianized version w of w. Second, we give a heuristic algorithm that,
using w, outputs w with high probability.

At the end of the section, we also give experimental evidence that our approach
works. We would like to emphasize that our attack works completely over the free
group Fn+m and in particular does not solve a subgroup membership problem in a
metabelian group. This shows that the system of [Shp04, SZ04] is not (at least
not solely) based on such a subgroup membership problem, in contrast to what is
implied by the title of [SZ04].

3.1. The Abelian Part. The crucial observation is that since all computa-
tions (apart from the postprocessing of the decrypted ciphertext) take place over
the free group Fn+m, we know the abelianization of all transmitted group ele-
ments. (Note that the abelianization of an element of Fn+m is well-de�ned, since
R ≤ [Fn+m, Fn+m].) So we can assume the abelianizations c and ϕ̂ of c and ϕ̂ to
be known, and are looking for the abelianization w of w. Now the abelianization
of Fn+m is isomorphic to Zn+m. Hence, any endomorphism φ of the abelianized
Fn+m can be seen as an endomorphism of Zn+m, i.e., as an (n + m) × (n + m)
matrix over Z acting by left-multiplication on Zn+m. Concretely, the columns of

1The partial Fox derivative with respect to xi is the map on ZFn+m de�ned by the recursion
Foxi(ab) = Foxi(a) + aFoxi(b), Foxi(xi) = 1 and Foxi(xj) = 0 for i 6= j.
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this matrix are simply the images of the free abelian generators of under φ. In the
following, we will thus consider the abelianized versions c, ϕ̂, w. of the endomor-
phisms c, ϕ̂, w as (n + m)× (n + m) matrices over Z. The set of these matrices we
write as Z(n+m)×(n+m). By c = w ◦ ϕ̂ it follows that

(3.1) c = w · ϕ̂

Further note that the abelianization πn ∈ Z(n+m)×(n+m) of πn is the diagonal
matrix with 1 on its �rst n diagonal elements and 0 on the remaining m diagonal
elements. Since w = w · πn, it follows that the last m columns of m are zero. And
since ϕ̂ = πn · ϕ̂, the last m rows of ϕ̂ are zero, too. So we can w.l.o.g. consider w
to be in Z(n+m)×n and ϕ̂ in Zn×(n+m). Then (3.1) is an overdetermined system of
linear equations. Further, since ϕ is an automorphism, rank ϕ = n + m, and thus
rank ϕ̂ = rankπn ·ϕ = n. So as an element of Zn×(n+m) has full rank and (3.1) has
a unique solution w which is this original plaintext. This unique solution can then
e�ciently be found using Gaussian elimination (over Q).

So in summary, we can easily obtain the abelianized version w of the plaintext
from the public key ϕ̂ and an encryption c of w alone.

3.2. The Non-Abelian Part. Let's have a closer look at the encryption
operation. Encryption consists of computing w ◦ ϕ̂ (for public ϕ̂) simply as a
substitution. More speci�cally, say that w is given as (w1, . . . , wn+m) ∈ Fn+m

n+m , and

ϕ̂ as (ϕ̂1, . . . , ϕ̂n+m) ∈ Fn+m
n+m .

Then c is computed as (c1, . . . , cn+m) ∈ Fn+m
n+m , where

(3.2) ci = ϕ̂i|xj→wj

(which means that ci is equal to ϕ̂i, only that every occurence of any xj is substi-
tuted with the corresponding wj).

Now say that ϕ̂1 starts with xj . Then (3.2) means that c1 starts with wj

(modulo cancellations in the free group). A very simple approach might now be to
try to �read o�� wj from the head of c1. The problems are that (a) cancellations
might have taken place and �corrupted� parts of wj , and (b) there is no telling
where wj �nishes and the next wj′ starts.

We deal with those two problems by searching di�erent ϕ̂i that all start with the
same generator, e.g., xj . Although not necessarily the case, the greatest matching
pre�x of the corresponding ci can be expected to be a pre�x of wj . Also, such
potential pre�xes can be found by looking at the tails of ci for which ϕ̂i ends
on x−1

j . Similarly, one can �nd potential su�xes of some wj by looking at the tails

of ci where ϕ̂i ends with xj , or at the heads of ci where ϕ̂i starts with x−1
j .

As soon as a potential pre�x w1
j and a su�x w2

j of some wj is found, it can be
tried to put wj together completely. Namely, one can try to chop o� generators from
the tail of w1

j and/or the head of w2
j until w1

j w2
j has the correct abelianization w.

(Recall that the previous section shows how to acquire w.)
Then, as soon as a good candidate for wj is found, (a) any xj or x−1

j at the

head or the tail of an ϕ̂i can be eliminated, and (b) the corresponding ci has to
be modi�ed accordingly (i.e., has to be multiplied with the candidate w−1

j or wj).

This yields a simpli�ed system of equations of the type (3.2), in which all x±1
j have

been eliminated from the heads and tails of the ϕ̂i. The method described can then
be iterated.
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Of course, this method is heuristic and heavily relies on the assumption that
not too many cancellations in the free group take place. The next subsection gives
evidence that nonetheless, our method can be used to successfully attack the system.

3.3. Experimental Results. We have implemented the system in C++ on
a standard PC, using the parameters from [Shp04, SZ04]. Also, we have imple-
mented the attack described above. We tested several thousand instances, and our
algorithm broke the system completely (i.e., correct guess for the complete plain-
text w) in about 99% of the cases. The time the attack took ranged from under a
second to several minutes, largely depending on the size of the generated public key.
(In some rare cases, we even had to abort the key generation, since the memory
usage was above one gigabyte.)

4. Foiling the Attack

The attack above needs in an essential way knowledge about free representatives
of ciphertext and public key. And not only that, it assumes that encryption took
place by performing a variable substitution according to (3.2) in the free group. In
fact, the original system was speci�ed exactly like this.

A very obvious way of how to break the assumptions needed for applying our
attack would be to actually make use of the relations in Fn+m. For example, the
ciphertext could be �perturbed� by applying metabelian relations. This method can
be combined by changing the presentation (i.e., the relations) of Fn+m as described
in [SZ05, Section 7]. The problem with this is that there is no obvious way of how
to do so concretely in a manner that is not invertible by an attacker.

Another way to use these relations would be to transmit the ciphertext as a
vector of components in an Fn+m-normal form. (In a certain sense, this means
applying all relations simultaneously.) However, with the normal form described
in [Shp04, SZ04] (for di�erent purposes, see above), it is not clear how to decrypt
the ciphertext in normal form. Namely, for decrypting c, it has to be composed with
the secret key ϕ−1. Basically, this means substituting all generators in ϕ−1 with
the respective components (i.e., images on generators) of c. If these components
are in a normal form, it must be possible to multiply two elements in such a normal
form. It is not clear how to do so with the normal form from [Shp04, SZ04].

To this end, one can simply use a normal form that is multiplicative, in the
sense that it is (e�ciently) possible to multiply two elements in normal form to get
the normal form of the product. The following Fn+m-normal form is easily seen to
be multiplicative:

For a free representant z ∈ Fn+m, let NF∗(z) be the vector of abelianized Fox
derivatives of z, together with the abelianization of z itself. As R ≤ [Fn+m, Fn+m],
this is still unique for two representants of the same word ∈ Fn+m.

Furthermore, let two normal forms NF∗(z1),NF∗(z2) of representatives z1, z2 ∈
Fn+m be given. Then the normal form NF∗(z1z2) of the product consists of the

abelianized partial Fox derivatives Foxi(z1z2) of z1z2, and of the abelianized prod-

uct z1z2. The latter can be trivially obtained from the abelianized z1 and z2 (which

are part of NF∗(z1), resp. NF∗(z2)), and Foxi(z1z2) can be computed as

Foxi(z1z2) = Foxi(z1) + z1 · Foxi(z2)

by the rules of Fox derivatives.
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Because of this e�cient multiplication, this normal form can be applied to
the ciphertext after encryption. In this way, an attacker does not learn a free
representative of the encrypted value, and our attack from above will not work.
However, for encryption, the public key still has to be in a free representation: the
only obvious way to compute c = w ◦ ϕ̂ seems to be as a substitution as in (3.2).
Here, generators xj in a free representation of the public key ϕ̂ are substituted with
the corresponding components wj of the plaintext w. For this, a free representation
of ϕ̂ must be available.

5. Further potential weaknesses

We have seen in the previous section how to address our attack by hiding the
structure of the free representatives of the transmitted elements of Fn+m. However,
this may not be su�cient. First of all, note that the abelian part of the attack
presented in Section 3.1 still works with the repaired scheme of Section 4. (This
is so because for recovering the abelianized solution w of the plaintext, only the
abelianized c and ϕ̂ are needed.) That is, the abelianized plaintext w can still be
obtained in the repaired scheme; this might give at least partial information about
the plaintext w. It does not seem easy to protect against this, since the abelianized
c and ϕ̂ are already uniquely determined by c, ϕ̂ ∈ Fn+m; the only way might be
to �hide� these abelianizations in a normal form.

Moreover, we conducted experiments using a heuristic algorithm for �nding a
free representative of an element of Fn+m given in normal form. When a random
element x of the free group Fn+m of length 500 was chosen, converted to normal
form, and then converted back to a free element x̃ using the heuristic algorithm,
the probability that x = x̃ was approximately 47 %.

To demonstrate the signi�cance of this e�ect, assume as a thought experiment,
that the probability for x = x̃ is near 1 even for long x. Then the improvements
mentioned in Section 4 do not help against the attack of Section 3, since we can
simply take the normal form and convert it back to the (probably) original element.

However, in reality the situation is not as simple. First, even for a length of
500, the probability of x = x̃ is only 47 %, so the probability that all transmitted
elements are correctly reconstructed gets exponentially small in the number of the
transmitted elements. Second, with increasing length, the probability of x = x̃
seems to fall rapidly (only 22 % for length 1000 and 6 % for length 2000). But the
fact that words of length 500 can be perfectly reconstructed with probability 47 %
indicates that the relations of Fn+m �strike� rarely, i.e., when considering a random
element x of Fn+m the shortest representative x̃ of x + R is with high probability
similar to x (i.e., large subwords of x and x̃ are identical).

This hypothesis is further supported by the fact that the shortest word in R
(except the empty word) has length 14 (in comparison to e.g., 4 for the relations
of the free abelian group). Since further the approach of Section 3 could probably
be made more fault tolerant by more sophisticated techniques,2 it is possible that
such a procedure might break the cryptosystem even if all transmitted elements

2Such techniques could include (1) eliminating heads or tails only if there are several indica-
tions (and not only one) to support this, (2) backtracking from errors, (3) looking at the interior of
the free elements for additional hints, and (4) after each step converting the intermediate results
back to the normal form and again to free elements to make use of the simpli�cations introduced
by removing heads or tails (since by only dividing by the head or tail elements, we do not remove
errors introduced by the relations of Fn+m).
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are sent using a normal form or disguised by random application of relations. This
might also be considered an indication that the proposed platform group Fn+m is
�too close� to a free group for cryptographic purposes.

6. Conclusions

We have shown a way to attack the metabelian group based public key cryp-
tosystem due to Shpilrain and Zapata, and we have veri�ed with experiments that
our attack works. We have also shown how to prevent our attack, although even
then adaptions of the attack often apply. In summary, we believe that further re-
search is necessary regarding the suggested parameters (and possibly the proposed
platform group) for the Shpilrain-Zapata cryptosystem.
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