
Information Flow in the Peer-Reviewing Process (Extended Abstract)

Michael Backes, Markus Dürmuth, Dominique Unruh
Saarland University

{backes,duermuth,unruh}@cs.uni-sb.de

Abstract

We investigate a new type of information flow in the
electronic publishing process. We show that the use of
PostScript in this process introduces serious confidential-
ity issues. In particular, we explain how the reviewer’s
anonymity in the peer-reviewing process can be compro-
mised by maliciously prepared PostScript documents. A
demonstration of this attack is available. We briefly discuss
how this attack can be extended to other document formats
as well.

1. Introduction

The PostScript language [1] and its successor PDF
(Portable Document Format) are the de-facto standards for
electronic publishing. Despite PostScript being the older
standard, its availability on virtually any platform and its
support on a number of printers makes it still widely de-
ployed, in particular in scientific publishing. It is well-
known that PostScript is a Turing-complete programming
language, and it also comprises commands to access the file
system. Some enthusiasts have even implemented a web
server [14] or an HTML renderer [8] in PostScript.

In 1992 the community involved in developing the
GhostScript interpreter realized that this comprehensive
set of commands rises security issues when processing
PostScript documents from untrusted sources. This led to
the introduction of a configuration option, which prevents
the document to access files on the local machine, i.e., to
read, write, and delete files. This option is nowadays ac-
tivated by default. It is commonly believed that this is
sufficient to ensure security against malicious documents.
(Barring, of course, implementation glitches which tend to
appear in and threaten the security of most complex appli-
cations.) In the following we argue that this belief isnot
justified. It can be seen as an example of an incomplete
modeling of the information flow occurring in the publish-
ing process which in turn gives rise to natural exploits of the
weaknesses of the PostScript language.

1.1. The Electronic Publishing Process

To elaborate on our attack, let us first consider the infor-
mation flow that naturally appears in the electronic publish-
ing process. Usually, the user Alice prepares a document
on computerA. Then this document is transferred, e.g., by
email, to the computerB of user Bob. Finally, Bob reads
the document as rendered by computerB (on screen or by
printing it). The information flow of this process is depicted
by the solid arrows in Figure 1 (a).

BA

reads

private

information

back-channel

Alice Bob

BA

reads

referee’s 

identity

referee report

Author Referee

submission

(a) (b)

Figure 1. Information flow of electronic pub-
lishing, (a) in the general case, (b) in the spe-
cial case of peer-reviewing.

However, for PostScript documents this description is
not complete. Since PostScript is a Turing-complete pro-
gramming language, the rendered document may depend in
arbitrary manner on the data accessible to the PostScript
code. This data may—depending on the particular imple-
mentation of the PostScript interpreter—contain some of
Bob’s private information stored on computerB. We will
see below that this is indeed the case for common PostScript
implementations. In this light, it is necessary to extend the
information flow diagram by another arrow (depicted by a
dashed arrow below computerB in Figure 1 (a)).

It is this idea of information flow that often underlies—
although not explicitly stated—the security considerations
concerning PostScript code, and it is this idea that governs
the design decisions whether language features have to be
disabled or whether they may be available to untrusted docu-
ments. In this model, Bob’s private information only flows
to Bob, but not back to Alice. This is usually considered

1



to be harmless. As a consequence, in common implemen-
tations the access to the private information is not—so we
will show—as restricted as it should be.

The flow of information that is usually overlooked in
this setting is the human communication between Alice and
Bob, in particular, information flowing from Bob to Alice.
So a complete diagram should at least contain an additional
arrow from Bob to Alice. (In order to make the presentation
more concise, we do not include arrows that are not relevant
to our discussion.) Including this back-channel, we finally
get the situation depicted in Figure 1 (a). Presented in this
form, one immediately sees that Bob’s private information
might in fact flow to Alice.

At this point, one might object that this back-channel is
not a security threat since it is not under Alice’s control and
since the human being Bob will not tell Alice any confiden-
tial information even if that information are contained in the
rendered document. This, however, is not entirely correct,
as Bob may talk to Alice about seemingly harmless informa-
tion, which may convey the private information through a
subliminal channel. So the task of a malicious Alice would
be threefold: First, identify some interesting private infor-
mation available to the PostScript code. Second, devise a
dynamic document such that Bob’s response will depend
on the dynamic details of the document. And third, Alice
has to devise an encoding that hides the private information
in the dynamic content of the document such that the private
information can be reconstructed from Bob’s response.

The remainder of this paper is devoted to demonstrating
the feasibility and relevance of the above approach. This
will be done by analysing and exploiting the information
flow in a setting in which PostScript is very popular: the
scientific peer-reviewing process.

1.2. The Peer Reviewing Process

The reviewing process in scientific publishing is usu-
ally implemented as a peer-reviewing process, the main rea-
son being that reviewing scientific papers requires in-depth
knowledge of the subject to judge on its correctness, nov-
elty, and quality. However, judging the work of colleagues
potentially bears the danger of decisions being influenced
by political considerations, especially if the author who’s
work is being refereed is aware of the identity of the referee.
In particular younger researchers might be afraid to openly
contradict established and influential members of the com-
munity. For this reason, during a peer-review, the identity
of the referee (and often also of the author) is kept secret.

In this light, the identity of the referee, which is usually
known to the referee’s computer, can be considered as pri-
vate information whose confidentiality must be ensured. So
by applying the considerations of the preceding section to
the peer-reviewing process, we see that the information flow

is as depicted in Figure 1 (b). It turns out that the identity of
the referee is indeed accessible to untrusted documents in
many PostScript implementations.

The back-channel is also naturally present in the review-
ing process. Since the author usually gets a referee report
listing suggestions and mistakes, the author can implement
a back-channel by creating a document that dynamically in-
troduces mistakes depending on the identity of the referee.
Even if the referee does only report part of these errors,
using a suitable error-correcting code one can easily trans-
mit enough information to be able to identify the referee in
many situations. So the anonymity of the peer-reviewing
process is indeed in danger when using PostScript.

1.3. Related Work

The back-channel we are using can be seen as a novel
form of a covert channel [15]. Traditional covert chan-
nels typically transmit data on an electronic link, usuallya
network connection, e.g., by exploiting different execution
times resulting in observably different behaviors [17, 3, 9],
or by employing steganographic techniques to hide data
within other data, see [4] for a survey. In our scenario the
PostScript document takes the part of the sender of the data,
while the author is the receiver. In contrast to the common
setting, the channel we are investigating is not an electronic
one but constitutes a socially-engineered back-channel.

Our approach furthermore has similarities to the notion
of watermarking schemes [11, 13]. While robust water-
marking schemes provide measures that prevent the water-
mark from being removed from the document, fragile water-
marking schemes aim to detect if a document was tampered
with. Thus they do not precisely fit our setting as we rather
rely on the usual behavior of a reviewer and are not primar-
ily interested in whether an existing document was modified.
Another related concept is traitor tracing [10, 6, 5], which
allows for detecting a party who leaked a secret, e.g., a se-
cret decryption key. While there are again similarities at
the surface, the exact setting as well as the technical realiza-
tion of our work is quite different since the reviewer does
not intentionally leak its secret key but is rather pushed into
leaking it without noticing.

Some other surprising PostScript hacks include a Web-
server [14] as well as an HTML-renderer [8]. A virus-
like program written in LATEX is described in [16]. Weak-
nesses of PostScript and the process that led to the current
(insufficient) sandboxing model which is implemented on
GhostView can be found at the GhostScript homepage [12].

2. Encoding Data in Errors

We will now discuss how the private information can ac-
tually be encoded into errors. We will concentrate on the

2



case of binary errors, i.e., errors that either occur or do not
occur. Of course, one could also use errors with higher en-
tropy. As an extreme example, one could insert a random-
looking word which is a one-time-pad encryption of the user
name or other confidential information. If the referee sends
that word back, decoding is easy. In the binary case, the
situation is more involved.

We will use errors that are either letter-level or word-
level errors (e.g., substituting letters or words by other let-
ters or words), since these seem to be easily detectable.
Furthermore, if the errorneous word has the same length
as the correct one, these errors can be easily implemented
(cf. Section 3). Furthermore, we believe that the errors
should be contained in abstract or introduction, since other
parts might be read with already lessened concentration.
Also, the number of errors should be kept small, and one
should avoid errors that are too extreme (like the above-
mentioned random word), since otherwise the referee might
simply recommend a detailed proof reading instead of list-
ing individual errors.

So in order to encode the username (or whatever informa-
tion we want to transmit), we first transform the username
into a natural number. There are different possibilities how
to do this. If the set of potential referees is manageable (e.g.,
a several dozen or even a few hundreds), one might hard-
code the list of referees into the document. Then the user-
name is matched against each referee and the index of the
matching referee is used. Of course, the matching routine
should be smart enough to match variations of the referee’s
full name, such assmith , john , jsmith , johnsmith ,
john smith , john.smith . Such a limited referee list
exists in many conferences where the submissions are re-
viewed by the program committee. (If the document hap-
pens to be reviewed by a subreferee, we choose a special
index to indicate failure.) If no such list is available, we
probably will be able to transmit only part of the username,
e.g., the first two letters or the initials, from which the au-
thor has to guess the identity of the referee.

When an encoding of the username as a natural number
u ∈ {1, . . . , N} has been fixed, we have to find a suitable
code. To encode the usernameu, this code needs to haveN
codewords. Assuming that we haven possible distinguish-
able positions where errors may occur, each codeword has
to have lengthn. Each bit that is set in the codeword corre-
sponds to an error that will occur in the document. Assume
that we choose to havew errors in our document. Note that
the choice ofw is crucial. Too small numbers will make
the encoding more difficult, but too large numbers might
have the result that the referee will not list individual errors
any more. If we fixed aw, this is the Hamming weight of
each codeword, so the code is a constant-weight code. Fi-
nally, we cannot assume that the referee finds all errors. We
should be able to decode given only some of the errors. Let

n w e N

24 4 3 498
24 4 4 10626

n w e N

24 5 3 168
24 5 4 1895

n w e N

24 6 4 532
24 6 5 7078

n w e N

24 7 4 253
24 7 5 1368

n w e N

24 8 4 38
24 8 5 759

Figure 2. Lower bound N on the size A(n, 2w−
2e + 2) of codes suitable for transmitting data
in errors.

e be the number of recognized errors that should be suffi-
cient to decode. This is fulfilled if for any two codewords
c1, c2, they share at moste − 1 bits that are set. This holds
if and only if at leastw − e + 1 bits are set only inc1, and
w − e + 1 bits are only set inc2. And this is equivalent to
the fact thatc1 andc2 have Hamming distance2w− 2e + 2.
LetA(n, d, w) denote the size of the largest constant-weight
code with codeword lengthn, minimal Hamming distanced
and weightw. Then there is a code satisfying the above con-
ditions if and only ifA(n, 2w − 2e + 2, w) > N . Constant-
weight codes are well-studied, e.g., [7, 18] give (construc-
tive) lower bounds forA(n, d, w) for many parameters.

Assume for example, that we haven = 24 possible er-
rors. By [7, 18] we get the lower bounds given in Figure 2.
Assume that we want to encode the first two letters of the
referee name and to add a special index to denote failure.
ThenN = 26 · 26 + 1. Some possible choices forw ande

are then(4, 4), (5, 4), (6, 5), (7, 5), and(8, 5). For our on-
line demonstration we have chosen(w, e) = (8, 5), i.e., if
the referee detects5 out of8 errors, we can decode the two
letters. (Note that we have graceful degradation. Even if
the referee finds only4 errors, the set of possible decodings
is still quite small.) We have chosen this as a compromise
between the number of errors (eight) and the percentage of
mistakes the referee may overlook (36.5 %). Admittedly,
eight errors is quite a lot for a single page of text. This can
be remedied by either distributing the errors on a longer text
or by increasingn. We might prepare a text where almost
each word may contain a potential error, resulting inn being
in the order of several hundreds.

3. Technical Realization

We now give the technical aspects of the implementation
and discuss which interpreters and platforms our methods
can be applied to. The results are summarized in Figure 3.

3



Environment
Variables

Directory
Listing

File
Access

GhostScript
– Windows X (X)1 −
– Unix/Linux X X −

Adobe Distiller − X X

PS Printer Printer dependent.

Figure 3. Comparison of the capabilities of
some PostScript interpreters

We note that the data accessible to the document varies
for different PostScript interpreters. In particular, when the
PostScript document is interpreted on a printer, the user-
name often is not available at all. However, at least under
Windows the PostScript code is usually interpreted by the
computer even when printing, so in this case the username
is available. Under Unix, the behavior depends strongly on
the printer driver and the capabilities of the printer.

3.1. Identifying the user

The first step for the PostScript document is to determine
the username. Depending on the PostScript interpreter on
the referee’s computer, different methods for reading out
the username exist (see also Table 3). GhostScript imple-
ments a slightlyextended set of operationswhich includes
a commandgetenv that allows to read out environment
variables. The user name is usually contained in the envi-
ronment variableUSERNAMEunder Windows andUSERor
LOGNAMEunder Linux. GhostScript is by far the most com-
monly used PostScript interpreter of university employees
(note that front-ends like GhostView, GSview, KGhostView,
etc. internally invoke GhostScript). Therefore this approach
already gives us a fair chance of success.

Another source for acquiring the user name is thedirec-
tory structureof the computer. Note that, while file access
is restricted with some interpreters such as GhostScript, di-
rectories can be listed on all implementations we are aware
of using the commandfilenameforall . This allows to
try and detect, e.g., the home directories available on the
computer. In case of a single user machine, the user name
can be extracted from the name of the home directory. We
use this approach in the case of Adobe Distiller, which al-
lows filesystem access but has no command to access envi-
ronment variables.

At this point it should be noted that Adobe Distiller im-
posesno limitation to file access (as of version 7.0.9). So

1There is an inconsistent behavior of GhostScript under Windows: the
commandfilenameforall only lists those directories which have
some attribute set (i.e., which are hidden, read-only or system files). The
GhostScript source code reveals this to be a bug.

the complete filesystem can be read andwritten. Since we
believe that this imposes a great security threat going far
beyond the issue presented in this paper, we have informed
Adobe of this problem. They will fix this issue as soon as
possible [2]. In our context, this unlimited access of course
allows us to retrieve any information from the referee’s com-
puter, not limited to the username.

3.2. Introducing dynamic errors

The second challenge is to implement dynamically
changing content in PostScript. Since PostScript is Turing-
complete, any dynamic changes are possible. However, in
practice we do not want to implement a complete typeset-
ting engine in PostScript, but use existing engines like TEX
for this purpose. Fortunately, this is possible since TEX
allows to include PostScript fragments which are simply
passed through into the final document. This PostScript
code can then be used to dynamically show or hide parts
of the document. So all we have to do is for each error
to typeset both the correct and the incorrect spelling at the
same place, and to use the PostScript code to hide one of
these spellings. Of course, this approach requires that the
correct and the incorrect spelling take up approximately the
same space.

4. Outlook

We have shown that the fact that PostScript is a pro-
gramming language can undermine the confidentiality of
personal data on the recipient’s computer. As an example,
we showed how to exploit this weakness to circumvent the
anonymity of the reviewer in the peer-reviewing process.

Our result gives rise to several related attacks when us-
ing PostScript; we briefly sketch some of them for com-
pleteness: (I) Information transmitted back to the originator
of the document is not limited to the username. In some
cases, malicious PostScript code might, e.g., have access to
passwords stored on the hard disk. (II) There is an inter-
esting variant of our attack on the peer-reviewing process
that does not even need a back-channel. After identifying
the referee, the document could adaptively modify itself to
include, e.g., references to the referee’s work or comments
that are likely to please that particular referee and thus in-
crease the probability of acceptance. (III) In PostScript im-
plementations with unlimited write access (e.g., Adobe Dis-
tiller), much more damage can be done since arbitrary code
can be installed on the referee’s machine. (IV) A contract
that changes after having been electronically signed might
even have serious legal implications.

Making PostScript resistant to the attack described in
this paper, as well as the attacks listed above, is relatively
straightforward: If a document cannot gainanyinformation

4



from the computer it is interpreted on, then the attack does
not work anymore. This means that the interpreter should
provide exactly the same environment to each document it
processes, on every computer and on any platform. To the
best of our knowledge it is sufficient to disable file access,
directorylisting, and environment access. Note that one can-
not completely disable these commands, as often parts of
the PostScript interpreter are written in PostScript as well.
However, since GhostScript already has a mechanism to
restrict file access when interpreting user documents, this
mechanism could simply be extended. This mechanism
could also serve as an example for other interpreters.

Finally, we want to emphasise that PostScript is not
the only document format that allows dynamic documents.
The Portable Document Format (PDF) allows embedded
JavaScript code to change the document. However, we con-
centrated on PostScript in this document, as it seem to offer
the widest range of methods to identify the user, and it al-
lows an easy presentation of the underlying mechanisms.

References

[1] PostScript Language Reference. Adobe Systems Incorpo-
rated, 1999.

[2] Adobe Systems Incorporated. Personal communication,
Nov. 2006.

[3] K. Ahsan and D. Kundur. Practical data hiding in TCP/IP.
In Proceedings of ACM Workshop on Multimedia Security,
2002.

[4] R. J. Anderson and F. A. P. Petitcolas. On the limits of
steganography.IEEE Journal of Selected Areas in Commu-
nications, 16(4):474–481, 1998.

[5] O. Berkman, M. Parnas, and J. Sgall. Efficient dynamic
traitor tracing. InSODA ’00: Proceedings of the eleventh an-
nual ACM-SIAM symposium on Discrete algorithms, pages
586–595. Society for Industrial and Applied Mathematics,
2000.

[6] D. Boneh and M. Franklin. An efficient public key traitor
tracing scheme. InProceedings Crypto ’99, volume 1666 of
LNCS, pages 338–353. Springer, 1999.

[7] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D.
Smith. A new table of constant weight codes.IEEE Trans.
Info. Theory, 36:1334–1380, 1990.

[8] T. Burton. HTML renderer in pure PostScript. On-
line available athttp://www.terryburton.co.uk/
htmlrenderer/ .

[9] S. Cabuk, C. Brodley, and C. Shields. IP covert timing
channels: Design and detection. InProceedings of 11th
ACM Conference on Computer and Communication Secu-
rity, pages 178–187, 2004.

[10] B. Chor, A. Fiat, and M. Naor. Tracing traitors. InCRYPTO
’94: Proceedings of the 14th Annual International Cryptol-
ogy Conference on Advances in Cryptology, pages 257–270.
Springer-Verlag, 1994.

[11] I. Cox, J. Kilian, T. Leighton, and T. Shamoon. A secure,
robust watermark for multimedia. InProceedings of Infor-
mation Hiding, pages 185–206, 1996.

[12] Ghostscript homepage. Available online athttp://www.
cs.wisc.edu/ ˜ ghost .

[13] F. Hartung and M. Kutter. Multimedia watermarking tech-
niques.Proceedings of the IEEE, 87(7):1079–1107, 1999.

[14] A. Karlsson. PS-HTTPD. Available athttp://www.
godisch.de/debian/pshttpd/ .

[15] B. W. Lampson. A note on the confinement problem.Com-
munication of the ACM, 16(10):613–615, 1973.

[16] K. A. McMillan. A platform independent computer virus.
Master’s thesis, University of Wisconsin-Milwaukee, 1994.

[17] I. Moskowitz and A. R. Miller. Simple timing channels. In
Proceedings of 1994 IEEE Symposium on Security and Pri-
vacy, pages 56–64, 1994.

[18] E. M. Rains and N. J. A. Sloane. Table of constant weight bi-
nary codes. Online available athttp://www.research.
att.com/ ˜ njas/codes/Andw/ .

5

http://www.terryburton.co.uk/htmlrenderer/
http://www.cs.wisc.edu/~ghost
http://www.godisch.de/debian/pshttpd/
http://www.research.att.com/~njas/codes/Andw/

	. Introduction
	. The Electronic Publishing Process
	. The Peer Reviewing Process
	. Related Work

	. Encoding Data in Errors
	. Technical Realization
	. Identifying the user
	. Introducing dynamic errors

	. Outlook

