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Random Testing

Outline

Testing is very important in programming

In JUnit and alike we collect test cases that are

prearranged argument-result pairs

In Haskell there is HUnit which does the same

However we could do better

� Since functions are pure we can test them against

properties

� Since data types are structural we can try generating

random data samples

Random testing enjoys some of the bene�ts of formal

veri�cation without nearly as much pain!
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reverse examples

Property

We concatenated in a wrong order:

propRevApp2 :: [Int ]! [Int ]! Bool

propRevApp2 xs ys =
reverse (xs ++ ys) � reverse ys ++ reverse xs

Output

Test> quickCheck propRevApp2
OK, passed 100 tests.
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reverse examples

Property

Let's check if you can reverse before concatenating:

propRevApp1 :: [Int ]! [Int ]! Bool

propRevApp1 xs ys =
reverse (xs ++ ys) � reverse xs ++ reverse ys

Output

Test> quickCheck propRevApp1
Falsifiable, after 4 tests:
[-3,-4,-4]
[-4,-1,1,1]
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Distribution examples

Property

The following property asserts that addition and multiplication

distribute:

propDistributiveI :: Int ! Int ! Int ! Bool

propDistributiveI a b c =
a � (b + c) � (a � b) + (a � c)

Output

Test> propDistributiveI
OK, passed 100 tests.
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Distribution examples

Property

The same property for Floats fails:

propDistributiveF :: Float ! Float ! Float ! Bool

propDistributiveF a b c =
a � (b + c) � (a � b) + (a � c)

Output

Test> quickCheck propDistributiveF
Falsifiable, after 7 tests:
3.0
-2.666667
3.75



Distribution examples

Property

The same property for Floats fails:

propDistributiveF :: Float ! Float ! Float ! Bool

propDistributiveF a b c =
a � (b + c) � (a � b) + (a � c)

Output

Test> quickCheck propDistributiveF
Falsifiable, after 7 tests:
3.0
-2.666667
3.75



insert and ordered

De�nition

For the next several slides we will consider a function which

inserts an element into an ordered list.

insert e (x : xs) =
if e < x then e : x : xs else x : (insert e xs)

insert e [ ] = [e ]

ordered tests whether the list is ordered:

ordered ::Ord a ) [a ]! Bool

ordered [ ] = True

ordered (x : [ ]) = True

ordered (x1 : x2 : xs) =
if x1 6 x2 then ordered (x2 : xs)
else False



insert examples

Property

We would want to test whether insert works, but this has point

only on ordered lists:

propInsert1 :: Int ! [Int ]! Bool

propInsert1 x xs =
if ordered xs

then ordered (insert x xs)
else True

Since QuickCheck does not work on polymorphic types we

choose Ints here.

Output

Test> propInsert1
OK, passed 100 tests.
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insert examples

Property

But did this actually tell us anything? How do we know how

many lists were ordered?

propInsert2 :: Int ! [Int ]! Property

propInsert2 x xs =
(length xs � 0 _ : (ordered xs)) `trivial `
if ordered xs

then ordered (insert x xs)
else True

Output

*Test> quickCheck propInsert2
OK, passed 100 tests (82% trivial).
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insert examples

Property

==> is the QuickCheck combinator that makes it test only the

�tting values:

propInsert3 :: Int ! [Int ]! Property

propInsert3 x xs =
ordered xs ==> ordered (insert x xs)

Output

Test> propInsert3
OK, passed 100 tests.
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insert examples

Property

How well do we actually test? Can this pass?

insBad a [ ] = [a ]
insBad a y

j (length y)> 4 = y ++ [a ]
j otherwise = insert a y

propInsertBad1 :: Int ! [Int ]! Property

propInsertBad1 x xs =
ordered xs ==> ordered (insBad x xs)

Output

Test> quickCheck propInsertBad1
OK, passed 100 tests.
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insert examples

Property

propInsertBad2 :: Int ! [Int ]! Property

propInsertBad2 x xs =
ordered xs ==>
collect (length xs) $ ordered (insBad x xs)

Output

Test> quickCheck propInsertBad2
OK, passed 100 tests.
53% 0.
24% 1.
14% 2.
8% 3.
1% 4.
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insert examples

Property

propInsertBad3 :: Int ! [Int ]! Property

propInsertBad3 x xs =
ordered xs ==>
classify (ordered (x : xs)) "at-head" $
classify (ordered (xs ++ [x ])) "at-tail" $
ordered (insBad x xs)

Output

Test> quickCheck propInsertBad3
OK, passed 100 tests.
53% at-head, at-tail.
20% at-tail.
20% at-head.
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Outline

We test mostly trivial or very simple cases (only one insert

in the middle of the list!)

Just checking whether list is ordered is not enough!

We need a way to generate ordered lists!
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Gen a

De�nition

Generators are instances of the Monad class with the

(simpli�ed) concrete representation:

newtype Gen a = Gen (Rand ! a)

The types of bind and return suggest we can use them as

combinators to build complex generators out of simpler ones:

return :: a ! Gen a

(>>=) ::Gen a ! (a ! Gen b)! Gen b



Arbitrary a

De�nition

The type class Arbitrary a denotes types for which we can

generate random values:

class Arbitrary a where
arbitrary ::Gen a

And these values are used in a property by applying forAll :

forAll :: (Show a ;Testable b))
Gen a ! (a ! b)! Property



Arbitrary instances

De�nition

Given a function choose :: (Int ; Int)! Gen Int , we write:

instance Arbitrary Int where
arbitrary = choose (�42; 42)

We can use the built-in liftM2 monad function to add pairs to

the Arbitrary class.

instance (Arbitrary a ;Arbitrary b))
Arbitrary (a ; b) where
arbitrary = liftM2 (; ) arbitrary arbitrary



Enumeration generator

De�nition

The oneof :: [Gen a ]! Gen a combinator randomly selects

one generator from a list. Elements are weighted equally.

data Prof = Steve j Stephanie j Benjamin

instance Arbitrary Prof where
arbitrary = oneof

[return Steve ; return Stephanie ; return Benjamin ]

We can also de�ne Arbitrary [a ] using oneof :

instance Arbitrary a ) Arbitrary [a ] where
arbitrary = oneof

[return [ ]; liftM2 (:) arbitrary arbitrary ]



List generator

De�nition

Our previous instantiation of Arbitrary [a ] created empty lists

half the time. To �x this we use

frequency :: [(Int ;Gen a)]! Gen a :

instance Arbitrary a ) Arbitrary [a ] where
arbitrary = frequency

[(1; return [ ]);
(4; liftM2 (:) arbitrary arbitrary)]



Trees generator

De�nition

We can also instantiate a tree generator:

data Tree a = Leaf a j Branch (Tree a) (Tree a)
instance Arbitrary a )
Arbitrary Tree a where
arbitrary = frequency

[(1;LiftM Leaf arbitrary);
(2;LiftM2 Branch arbitrary arbitrary)]

What's wrong with this de�nition?
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Sized generators

De�nition

We can ensure generated data structures have �nite size by

adding an explicit size parameter to Gen a . Our deï¬�nition

becomes

newtype Gen a = Gen (Int ! Rand ! a)

and is used with a new combinator:

sized :: (Int ! Gen a)! Gen a



Tree generator

De�nition

The following tree deï¬�nition will produce a trees with no

more elements than the parameter to arbTree . Note that this

parameter is passed in by sized and is a global constant.

data Tree a = Leaf a j Branch (Tree a) (Tree a)
instance Arbitrary a )
Arbitrary Tree a where
arbitrary = sized arbTree

arbTree 0 = liftM Leaf arbitrary

arbTree n = frequency

[(1; liftM Leaf arbitrary);
(2; liftM2 Branch

(arbTree (n `div ` 2))
(arbTree (n `div ` 2)))]



insert examples

De�nition

Back to our problem:

insBad a [ ] = [a ]
insBad a y

j (length y)> 4 = y ++ [a ]
j otherwise = insert a y

propInsertBad1 :: Int ! [Int ]! Property

propInsertBad1 x xs =
ordered xs ==> ordered (insBad x xs)

Output

Test> quickCheck propInsertBad1
OK, passed 100 tests.



orderedList

De�nition

Now we can de�ne orderedList generator:

orderedList = do
a  frequency [(1; return [ ]);

(7; liftM2 (:) arbitrary arbitrary)]
return (sort a)



Example

De�nition

And �nally fail the example!

propInsertBad4 :: Int ! Property

propInsertBad4 x =
forAll orderedList $ �xs ! ordered (insBad x xs)

Output

*Test> quickCheck propInsertBad4
Falsifiable, after 10 tests:
-6
[-8,-4,-3,0,5]



In�nite Structures

De�nition

In�nite structures will cause in�nite loops:

propDoubleCycle1 :: [Int ]! Property

propDoubleCycle1 xs =
: (null xs) ==>
cycle xs � cycle (xs ++ xs)



In�nite Structures

De�nition

However we can control them up to any �nite size:

propDoubleCycle2 :: [Int ]! Int ! Property

propDoubleCycle2 xs n =
: (null xs) ^ n > 0 ==>
take n (cycle xs) � take n (cycle (xs ++ xs))



Functions

De�nition

Let's try to de�ne random functions by throwing away the

input and generating a random result. In this case:

propFunc1 :: (Int ! Int)! Int ! Bool

propFunc1 f x = (f � (+2)) x � (f � (�2)) x

Output

Test> quickCheck propFunc1 OK, passed 100 tests.



Functions

Outline

We need a functional dependency between input and

output, or we can get wrong results

Type of Gen (a ! b) is Int ! Rand ! a ! b

� This is equivalent to a ! Int ! Rand ! b

� And a ! Gen b

It's not clear we can make a value of one type into a

generator for another.

� However maybe we can use arbitrary Ints to transform

generators with variant :: Int ! Gen a ! Gen a .

� We can certainly make speci�c types into Ints:

coarbitrary b = if b
then variant 1
else variant 0
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Functions

Outline

In Haskell, the right way to generalize this is with a type

class.

class Coarbitrary a where
coarbitrary :: a ! Gen b ! Gen b

We then de�ne Arbitrary in terms of Coarbitrary (and a

helper function to match the types).

instance (Coarbitrary a ;Arbitrary b))
Arbitrary (a ! b) where
arbitrary =
promote (�a ! coarbitrary a arbitrary)
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helper function to match the types).
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Arbitrary (a ! b) where
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Functions

De�nition

variant :: Int ! Gen a ! Gen a

variant v (Gen m) =
Gen (�n r ! m n (rands r !! (v + 1)))

where
rands r0 = r1 : rands r2 where (r1 ; r2 ) = split r0

promote :: (a ! Gen b)! Gen (a ! b)
promote f =
Gen (�n r ! �a ! let Gen m = f a in m n r)



Functions

De�nition

instance Coarbitrary Bool where
coarbitrary b =

if b then variant 0 else variant 1

instance Coarbitrary Int where
coarbitrary n =
variant (if n > 0 then 2 � n else 2 � (�n) + 1)

instance Coarbitrary Char where
coarbitrary c = variant (ord c)



Functions

De�nition

And back to the example:

propFunc1 :: (Int ! Int)! Int ! Bool

propFunc1 f x = (f � (+2)) x � (f � (�2)) x

Output

*Test> quickCheck propFunc1
Falsifiable, after 0 tests:
*function*
-3



Implementation

De�nition

newtype Property = Prop (Gen Result)

class Testable a where
property :: a ! Property

instance Testable Bool where
property b = Prop (return $ resultBool b)

instance Testable Property where
property prop = prop

instance (Arbitrary a ;Show a ;Testable b))
Testable (a ! b) where
property f = forAll arbitrary f



Testing Monads

Outline

It is impossible to random test IO monad

ST monad can be tested by randomly generating lists of

actions

It is not too comfortable

However since functions like ==> are de�ned on

Propertys, we need to rede�ne them on a monad

transformer PropertyM

QuickCheck2 provides support for that
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Shrinking

Outline

Often we �nd a counter example, but it's way too big to

understand the underlying cause

In such a case it is possible to start shrinking the example

to �nd a subexample that still causes the function to fail

This is implemented as an extra function shrink in

Arbitrary class that generates all substructures

QuickCheck2 implements these and some extra for most

common structures
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