
Garbage Collection

Garbage Collection

Garbage collection automatically frees storage which is not
used by the program any more.

Has two phases:

{ Garbage detection | �nds which objects are alive and
which dead;

{ Garbage reclamation | unallocates dead objects.

Liveness is a global semantic property which is unsolvable
in general.

Garbage collection uses an approximation: an object is alive
if it's reachable from the root set; otherwise it's dead.

Reference-Counting

Reference-Counting

Each object has a counter which keeps track the number of
references to the object.

Counter is modi�ed when references to the object are
added/deleted:

{ counter is incremented on adding a new refernce;
{ counter is decremented on deletion of a reference.

If counter is zero, then the object is freed:

{ the object is inserted into the free list;
{ all its outgoing pointers are deleted.

Reference-Counting

Example:

1 2 1

1 1

1

2

1 1

HEAP SPACE

ROOT
SET

Reference-Counting

Example:

2 2 1

1 1

1

2

0 1

HEAP SPACE

ROOT
SET

Reference-Counting

Example:

2 2 1

1 1

1

2

0

HEAP SPACE

ROOT
SET

Reference-Counting

Example:

2 2 1

1 1

1

1

HEAP SPACE

ROOT
SET

Reference-Counting

Advantages

4 simple to implement;

4 activities related to garbage collection are distributed:

{ relatively easy to make it incremental;

4 good locality:

{ modi�es only counters of source and target references;

4 minimal zombie time (time between the object becoming a
garbage and its reclamation);

4 allows easy implementation of object �nalization.

Reference-Counting

Drawbacks

8 relatively ine�cient:

{ must manage counters even when there is no garbage.

8 memory fragmentation:

{ analoguous to other free list based methods;

8 if there are many small objects, may require substantial
amount of memory for counters.

8 the complexity of recursive unalloaction is in worst case
bounded by size of the heap;

8 is unable to reclaim all garbage:

{ cyclic data structures.

Mark-Sweep garbage collection

Mark-Sweep

Has two phases:

1 starting from roots, mark all reachable objects;

2 scans over the heap and free all objects which are not
marked.

void gc (void) {
foreach x 2 Roots do

mark (x);

end;

collect ();

}

Mark-Sweep garbage collection

Procedure mark()

Marks the given node and then recursively marks all nodes
reachable from it.

Recursion stops when the node is already marked or if the
node contains only primitive values (no pointers).

void mark (ref x) {
if (x!mark == 0) {
x!mark = 1;

foreach y 2 sons(x) do

mark (y);

end;

}
}

Mark-Sweep garbage collection

Procedure collect()

Performs a full scan over the heap and puts all unmarked
objects into the free list.

void collect (void) {
freelist = NIL;

foreach x 2 objects() do

if (x!mark == 0) {
x!next = freelist;

freelist = x;

}
else x!mark = 0;

end;

}

Mark-Sweep garbage collection

Example:

1 Recursive marking:

2 Collecting the garbage:

0 0 0 0 0

Mark-Sweep garbage collection

Example:

1 Recursive marking:

2 Collecting the garbage:

1 0 0 0 0

Mark-Sweep garbage collection

Example:

1 Recursive marking:

2 Collecting the garbage:

1 0 1 0 0

Mark-Sweep garbage collection

Example:

1 Recursive marking:

2 Collecting the garbage:

1 0 1 0 1

Mark-Sweep garbage collection

Example:

1 Recursive marking:

2 Collecting the garbage:

1 0 1 0 1

Mark-Sweep garbage collection

Example:

1 Recursive marking:

2 Collecting the garbage:

1 0 1 0 1

Mark-Sweep garbage collection

Example:

1 Recursive marking:

2 Collecting the garbage:

1 0 1 0 1

FL

Mark-Sweep garbage collection

Example:

1 Recursive marking:

2 Collecting the garbage:

0 0 1 0 1

FL

Mark-Sweep garbage collection

Example:

1 Recursive marking:

2 Collecting the garbage:

0 0 1 0 1

FL

Mark-Sweep garbage collection

Example:

1 Recursive marking:

2 Collecting the garbage:

0 0 0 0 1

FL

Mark-Sweep garbage collection

Example:

1 Recursive marking:

2 Collecting the garbage:

0 0 0 0 1

FL

Mark-Sweep garbage collection

Example:

1 Recursive marking:

2 Collecting the garbage:

0 0 0 0 0

FL

Mark-Sweep garbage collection

Drawbacks

8 Marking is recursive.

{ In the worst case, size of the recursion stack is linear to
size of the heap!!

{ Possible solution: Deutsch-Schorr-Waite pointer reversal
algorithm.

8 Live objects are mixed with free heap areas.

{ Memory fragmentation.
{ Possible solution: Mark-Compact garbage collection.

Pointer Reversal

Deutsch-Schorr-Waite algorithm

void mark (ref x) {
FP = x; BP = NIL;

while (FP!mark 6= -1 || BP 6= NIL) {
if (FP!mark == 0) {
FP!mark = i = nextidx(FP);

if (i 6= -1) {
tmp = FP; FP = tmp[i];

tmp[i] = BP; BP = tmp;

}
} else { // FP!mark 6= 0
...

}
}

}

Pointer Reversal

0

i

BP

FP

i

i

BP

FP

Pointer Reversal

Deutsch-Schorr-Waite algorithm

...

} else { // FP!mark 6= 0
i = nextidx(BP);

if (i 6= -1) {
tmp = FP; FP = BP[i]; BP[i] = BP[BP!mark];

BP[BP!mark] = tmp; BP!mark = i;

} else {
tmp = FP; FP = BP; BP = FP[FP!mark];

FP[FP!mark] = tmp; FP!mark = i;

}
}
...

Pointer Reversal

i

i j

BP

FP

j

i j

BP

FP

Pointer Reversal

j

i j

BP

FP

-1

i j

BP

FP

Pointer Reversal

0 0 0 0 0

FP

BP

Pointer Reversal

1 0 0 0 0

FP

BP

Pointer Reversal

1 0 -1 0 0

FP

BP

Pointer Reversal

2 0 -1 0 0

FP

BP

Pointer Reversal

2 0 -1 0 1

FP

BP

Pointer Reversal

2 0 -1 0 -1

FP

BP

Pointer Reversal

-1 0 -1 0 -1

FP

BP

Mark-Compact garbage collection

Mark-Compact

Has three phases:

1 starting from roots, mark all reachable objects (similarly
for Mark-Sweep);

2 perform full scan of the heap and compute new addresses
for marked objects;

3 move marked objects to their new locations and change
pointers accordingly.

4 At the end of the garbage collection all free memory forms
a single compact region in the heap.

8 Relatively ine�cient, as it requires several scans over the
heap.

Copying garbage collection

Copying

The heap is divided into two equal subregions: FromSpace
and ToSpace.

FromSpace is a currently active memory region to where
allocated objects are saved.

Garbage collection is invoked when FromSpace becomes
full:

{ live objects are copied from FromSpace to ToSpace;
{ FromSpace and ToSpace
ip the roles (ie. former
ToSpace becomes FromSpace and vice versa).

Copying garbage collection

FROMSPACE TOSPACEROOT
SET

Copying garbage collection

FROMSPACE TOSPACEROOT
SET

Copying garbage collection

TOSPACE FROMSPACEROOT
SET

Copying garbage collection

Cheney algorithm

Has two (interchanging) phases:

the �rst phase (evacuate) copies all directly reachable
objects from FromSpace to ToSpace, replaces used pointers
by the ones pointing to the new corresponding objects,
and installs forwarding pointers in places of the evacuated
objects;

the second phase (scavenge) linearly scans the objects
copied into ToSpace and all objects (in FromSpace) directly
reachable from them are evacuated; if the object has already
been evacuated before, then it is not copied again but the
pointer to it is replaced by the forwarding pointer;

the process ends, when all objects in ToSpace are scanned.

Copying garbage collection

FROMSPACE

TOSPACE

ROOT SET

A B

C

D E

F

G

Free
Scan

Copying garbage collection

FROMSPACE

TOSPACE

ROOT SET

A B

C

D E

F

G

A B

Free
Scan

Copying garbage collection

FROMSPACE

TOSPACE

ROOT SET

A B

C

D E

F

G

A B C

Free
Scan

Copying garbage collection

FROMSPACE

TOSPACE

ROOT SET

A B

C

D E

F

G

A B C D

Free
Scan

Copying garbage collection

FROMSPACE

TOSPACE

ROOT SET

A B

C

D E

F

G

A B C D E

Free
Scan

Copying garbage collection

FROMSPACE

TOSPACE

ROOT SET

A B

C

D E

F

G

A B C D E F

Free
Scan

Copying garbage collection

FROMSPACE

TOSPACE

ROOT SET

A B

C

D E

F

G

A B C D E F G

Free
Scan

Copying garbage collection

FROMSPACE

TOSPACE

ROOT SET

A B

C

D E

F

G

A B C D E F G

Free
Scan

Copying garbage collection

FROMSPACE

TOSPACE

ROOT SET

A B

C

D E

F

G

A B C D E F G

Free
Scan

Copying garbage collection

Advantages

4 all free memory is in a single compact region;

4 object creation is very cheap:

{ memory allocation is an incrmentation of the heap
pointer by the object size;

{ checking of the heap exhaustion is a comparision of two
pointers;

4 only live objects are inspected:

{ most objects have relatively short life span;
{ hence, usually there are much less live objects than
garbage;

4 theoretical amortized e�ciency is very good:

{ on inrease of the heap size, the cost of copying will near
to zero!

Copying garbage collection

Drawbacks

8 the whole work is concentrated to the garbage collection
time:

{ might result for annoying pauses;

8 breath-�rst traversal may mix locality patterns;

8 all pointers are rearranged:

{ might invalidate some invariants the program is
assuming;

8 half of the memory is "useless";

8 objects with long life span are copied over and over again:

{ might be quite costly if "veteran" objects are large.

Generational garbage collection

Empirical facts

Infant mortality { most objects have very short life span.
Usually 80-90% objects die before the next megabyte is
used:

{ 60-90% CL and 75-95% Haskell objects die before
getting "10 kb old".

{ SML/NJ frees 98% of objects during each garbage
collection.

{ 95% of Java objects are "short-lived".

The older the object, the more probable that it survives
the next garbage collection.

Directionality of reference { usually younger objects point
to the older ones.

Generational garbage collection

Generational garbage collection

Memory is divided by the age of objects living there into
generations.

The number and size of di�erent generations is usually
�xed beforehand.

New objects (infants) are created into the youngest
generation (nursery).

When alive objects get older (tenure) they are promoted to
the next generation.

Garbage collections of di�erent generations are done in
di�erent frequencies

{ most frequently in the youngest generation.

Generational garbage collection

Memory division into generations

Generation 1 (youngest)

Generation 2

Generation n (oldest)

...

Live object

Dead object

Generational garbage collection

Remembered sets

In addition to "normal" roots, the given generation may
have outside pointers from other generations.

Their locations can't be detrmined statically .

Dynamically searching possible roots from other
generations during garbage collection is very costly.

Hence, each generation has a corresponding remembered
set, which contains references from other generations

{ if there is a pointer from one generation to another, then
the reference is added into the remembered set of the
target generation.

Generational garbage collection

Remembered sets

Root set

Young
generation

Remembered
set

Old
generation

Remembered
set

Generational garbage collection

Problem

Remembered sets may require a signi�cant amount of
memory

{ all intergeneration dependencies must be recorded.

Remembered sets must be mantained during the program
execution which may be very costly

{ each pointer variable may potentially be
intergenerational.

Solution

Record in remembered sets only references from the older
generation to younger ones

{ in case of two generations, only one remembered set (for
the nursery) is needed.

Use approximate remembered sets.

Generational garbage collection

One-way remembered sets

Root set

Young
generation

Remembered
set

Old
generation

Generational garbage collection

Remembered sets

Pointers from an older to a younger generation are roots
for the younger generation:

{ such pointers are relatively infrequent;
{ they may be created only by destructively updating a
pointer in a tenure object;

{ such assignements are catched by write barriers.

Pointers from a younger to an older generation are
frequent:

{ not a problem, if garbage collection of the older
generation always collects also the younger one.

Generational garbage collection

Generational garbage collection

Usually there are just two generations and the younger one
is relatively small.

Normally, garbage collection performs only a minor
collection which:

{ removes garbage only from the nursery;
{ old enough objects are promoted to the tenured space.

When the tenured space is exhausted, a major collection is
performed; ie. garbage is collected from both generations.

Minor and major collections may use di�erent garbage
collection methods (eg. minor uses copying and major uses
mark-compact).

Generational garbage collection

Issues

Minor colections doesn't remove garbage in the tenured
space:

{ all young objects pointed by a tenured garbage will
remain uncollected (nepotism).

How old must be an object before promoting?

{ One minor collection is not enough, as objects created
just before the collection haven't yet had time to die.

{ Usually, two minor collections is considered to be
enough.

How large should be the nursery?

{ Must �t into the main memory.
{ Too big may result to too long minor collection pauses.
{ Too small doesn't give enough time for young objects to
die.

Generational garbage collection

Train algorithm

Major collection may result to too long pauses for
interactive programs.

Train algorithm by Hudson and Moss uses incremental
collection for the old generation.

The tenured space is divided into cars:

{ each car has its own remembered set;
{ only one care is collected at once.

As substructures may live in di�erent cars, the cars are
grouped into trains:

{ the aim is to accumulate related data structures into one
train.

Generational garbage collection

Train algorithm | division of the tenured space

Old generation

Train 1

Train 2

Train 3

Car 1.1 Car 1.2 Car 1.3

Car 2.1 Car 2.2

Car 3.1 Car 3.2 Car 3.3 Car 3.4

Generational garbage collection

Train algorithm

Each call of the algorithm frees the �rst car (FromCar) of
the �rst train (FromTrain).

If FromTrain doesn't have any outside pointers to it, the
whole train will be freed.

Otherwise, the objects in FromCar pointed from other
trains are evacuated into these trains; objects pointed from
other generations are evacuated into some other (may be
completely new) train.

Reimaining outside pointers of FromCar are from other
cars of FromTrain; corresponding objects are evacuated
into the last car of FromTrain (creating a new car if
necessary), after which FromCar is freed.

Generational garbage collection

Train algorithm | the initial state

Root set

Train 1

Train 2

R

A C

S

D E

T

F

B

Generational garbage collection

Train algorithm | the state after the �rst collection

Root set

Train 1

Train 2

S

D E

T

F C

B

R

A

Generational garbage collection

Train algorithm | the state after the second collection

Root set

Train 1

Train 2

T

F C

D E

B

R

A

S

Generational garbage collection

Train algorithm | the state after the third collection

Root set

Train 1

Train 2

F C

D E

B

R

A

S T

Generational garbage collection

Train algorithm | the state after the fourth collection

Root set

Train 1

Train 2

B

R

A

S T

Generational garbage collection

Train algorithm | the state after the �fth collection

Root set

Train 2

Train 3

T

R S

Generational garbage collection

Train algorithm | the state after the sixth collection

Root set

Train 2

Train 3

R S

T

Generational garbage collection

Train algorithm | conclusion

4 If structures without outside pointers are completely in a
single train, they can be freed immediately.

4 In each collection, the number of evacuated objects is
bounded by size of a single car.

4 Evacuated objects are compacted into a single train.

8 Relatively complicated.

8 Requires quite a lot of memory for remembered sets.

Generational garbage collection

Advantages of generational garbage collection

4 Very successful for many applications.

4 Often shortens garbage collection pauses into the level
tolerable for interactive applications.

4 Has good locality properties.

4 Usually decreases the total garbage collection time.

Drawbacks of generational garbage collection

8 Worst case e�ciency is worse than in simpler methods.

8 Objects may not die fast enough.

8 Applications may be "hindered" by write barriers.

8 Too many old pointers into young objects, or too deep
stack, may result longer pauses.

	Garbage Collection
	Reference-Counting
	Mark-Sweep
	Copying garbage collection
	Generational garbage collection

