Lexical analysis

Lexical analysis

o Lexical analysis checks the correctness of program words
and transforms a program to the stream of tokens:
— removes empty symbols and commentaries;
identifies keywords, indentifiers and literal constants;
constructs a symbol table;
— finds line/column numbers of symbols;
informs about lexical errors when necessary.

@ Lexical analysis is also called scanning and the
corresponding analyser is called scanner.

Regular expressions

e Regular expressions over (finite) alphabet -
E:=0|e¢|a|(EE)| (E|E)| E

where a € 2.

o Regular expression F defines a language L(E) C &*

L(@) = 0 L(El Eg) = {’U,’U ’ u € L(El), v E L(Eg)}
L(e) = A{e} L(E, | B;) = L(E1)U L(EB)
L(a) = {a} L(E*) = {w'|weL(B), i >0}

0

where w° = ¢ and w"*t! = ww™.

Regular expressions

o Examples:

Regular expression Defined language
alb {a, b}
abba {abba}
ab*a {aa, aba, abba, abbba, ...}
(ab)* {e, ab, abab, ababab, ...}

o To minimize a number of needed parentheses, operators
have priorities:
— the closure operator (-)* has highest priority;
— the choice operator (- | -) has lowest priority.

Regular expressions

@ A regular description over alphabet ¥ is the set of rules

d1 — El
d2 — E2
d, — &,

where d; is a (unique) name and E; is a regular expression
over alphabet ¥ U {ds,...,d;—1}.
@ Short-hand notation for regular expressions:
— nonempty closure: ET = EE*;
- option: E? =¢ | E,
— character classes: eg. [a,b,c] =a | b| c or
[a—z]=a]...|z.

Regular expressions

Examples of regular descriptions:

Identifiers:
Letter - la—2, A-Z]
Digit — [0-9]
Identifier — Letter (Letter | Digit)*

Numeric constants:

Sign - (+]-)?

Integer ~— 0 | Sign[l — 9] Digit*
Decimal — Integer.Digit™

Real — (Integer | Decimal) F Integer

Finite automata

@ A finite automaton is the quintuple A = (@, X, d, g0, F),
where
— @ is a finite set of states;
— X is the finite alphabet;
-0 CQx(2Ue) x Q is the transition relation;
— go € Q is the initial state;
— F C @Q is a set of final states.
o A finite automaton is deterministic (DFA), if the transition
relation is a function § : @ x & — Q.

e Otherwise, the finite automaton is nondeterministic (NFA).

Finite automata

Finite automata can be represented by state transition
diagrams:
b

N

The finite automaton A = (Q, %, 6, qo, F') accepts the
language

where 0* C @ X X* x @ is a reflexive and transitive closure
of the transition relation 4.

Theorem: The class of languages accepted by finite
automata is that of regular languages.

Converting a regular expression to an automaton

Thompson’s construction for converting a regular expression to
NFA:

o for a regular expression F construct the "automaton’

o transform the "automaton” using following rules until all
transitions have only simple labels (ie. € or a character):

00
GFEG) — (7,0
(D 2() — (@] Tor{r)

Converting a regular expression to an automaton

Example:

a(a|b)*

Converting a regular expression to an automaton

Example:

a(alb)* @ a @(a\b)* g
7 > !

Converting a regular expression to an automaton

Example:

()w) (@)=

alb

€

Converting a regular expression to an automaton

Example:

()w) (@)=

Constructing DFA

e Given NFA A =(Q, %, 0, qo, F') construct an equivalent
DFA A’ =(Q', 1,4, qp, F') by subset construction.

o Auxiliary functions:
— the e-closure function e-closure : 29 — 2@

e-closure(S) = {p | 4 € 5, (q,¢,p) € 6"}
— the single step function mowve : 29 x & — 29

move(S,a)={p|q€ S, (g,a,p) €0}

Constructing DFA
Algorithm:

Q:=0; F':=0; §:=0;
g0 := e-closure({go}); U:={qo};
while 35 € U do
U:=U\S; Q:=Q U{S}
foreach a € ¥ do
T := e-closure(move(S,a));
if TZUUQ then U:=UU{T};
0 =8 U{(S,a) — T},
end
end
F={SeQ |SNF#0}

Constructing DFA

Example:

Q
o o o |@
Q

OO

2 3

as

Constructing DFA

Example:

@“QEU/E‘”

?PQ

m

™

Constructing DFA

Example:

m o 2

(u)

Example:

Constructing DFA

as

Example:

Constructing DFA

as

Constructing DFA

Example:

a
e

€
a
a
Onn OO
e

Minimizing DFA
e DFA constructed from the regular expression a(a | b)*:

@ An equivalent smaller DFA:

()—=—(s)
(0

Minimizing DFA
o DFA is minimal if there is no smaller DFA accepting the
same language.

@ For every DFA A = (Q, %, 0, o, F') there exists an (unique)
equivalent minimal DFA A' = (@', 5, ¢, g, F').
o Idea: partition the set of states into equivalence classes.

— States p,q € @Q are equivalent or indistinguishable if
automata having these as initial states accept the same
language (ie. for any word w € ¥* if one succeeds (resp.
fails), the other one does the same, and vice versa).

— For every letter, the transition function transformes
equivalent states to equivalent states.

Minimizing DFA
Minimization algorithm:

@ Remove all states unreachable from the initial state gq.

@ On the remaining set of states find the biggest partition IT
into equivalence classes.

o Construct the new automaton A' = (Q', %, ', g, F'), where

the set of states is Q' = II,

the initial state is gy = Py, where Py € II and g¢ € P;
the set of final states is F' = {P € II | PN F # 0},
the transition function is

0' = {(P;,a) — P; | P; € move(F;,a)}.

Minimizing DFA
Naive algorithm for finding partition:

P:={F, Q\ F}
doIl:=P; P:=0
foreach S €Il do
foreach a € X do
U:={T €I | T N move(S,a) # 0};
V:={SNmove }(T) | T € U}
P:=PUV;
end
end
until I = P;

Minimizing DFA
Naive algorithm tries to split all partition at every
iteration.
— In worst case has a quadradic complexity.
— It is enough to consider only these partitions from which
one can move to some split partition.

Hopcroft’s algorithm for finding the partition:

— uses work-list for non-examined split partitions;
— if a partition not in the work-list is split, then only one
(smaller) subpartition is put to the work-list.

Minimizing DFA
Hopcroft’s algorithm:

M:={F, Q\ F}; W:=1I;
while 35 €¢ W do
W:=W\S§,
foreach a € £ do
P := move;1(9);
foreach Re{T €Il |TNP#0, TZ P} do
Ri:=RNP; Ry:=R\ Ry;
II:=(I1 \ R)U {Rl, Rz};
if Re W then W := (W \ R)U{Ri, Ra2};
else if |R;| < |Rz| then W :=W U{R1};
else W :=W U{Ry};
end
end
end

Minimizing DFA

Example — minimizing DFA corresponding to the regular
expression (a | b)*abb:

qo

Minimizing DFA

Example — minimizing DFA corresponding to the regular
expression (a | b)*abb:

Minimizing DFA

Example — minimizing DFA corresponding to the regular
expression (a | b)*abb:

Minimizing DFA

Example — minimizing DFA corresponding to the regular
expression (a | b)*abb:

Minimizing DFA

Example — minimizing DFA corresponding to the regular
expression (a | b)*abb:

Minimizing DFA

Example — minimizing DFA corresponding to the regular
expression (a | b)*abb:

Scanner generator Flex

foo.1l

gcc

file.foo

a.out

tokens

Scanner generator Flex

Format of the input file:
@ An input file of Flex has three parts:

definitions
%%

rules

%%

user code

@ The definition part consits of:
— C code (included header files, definitions of global
variables);
— regular descriptions;
— definitions of start conditions.

Scanner generator Flex

@ The rules part consits of a sequence of pairs:
pattern action
where the pattern must start without indentation and ends
with the first empty symbol; the action must start on the
same line as is the pattern.
@ A pattern is a (extended) regular expression; an action is
an arbitrary C statement.
— If action is empty, the input corresponding to the
pattern is removed.
— If input doesn’t match with any pattern then it is copied
to the output.
@ The third part of the Flex input file is a C code which is
copied to the generated file lex.yy.c in verbatim.
— May be absent in which case the second separator is also
not required.

Scanner generator Flex

Interface for a parser:
int yylex(void)

char *yytext
int yyleng

FILE *yyin

FILE *yyout

int yywrap(void)

YYSTYPE yylval

the main function; returns the class of the
recognized word; and 0 at EOF

points to the last scanned word

the length of the last scanned word

the default input file

the default output file

should be defined in the third part; if not
then use '-1f1’ when linking; usually re-
turns simply 1

the structure containing a value of the
symbol; defined in the parser (in the inc-
luded header fail parser.tab.h)

	Lexical analysis

