

Lexical analysis

- Lexical analysis checks the correctness of program words and transforms a program to the stream of tokens:
 - removes empty symbols and commentaries;
 - identifies keywords, indentifiers and literal constants;
 - constructs a symbol table;
 - finds line/column numbers of symbols;
 - informs about lexical errors when necessary.
- Lexical analysis is also called scanning and the corresponding analyser is called scanner.

• Regular expressions over (finite) alphabet Σ

$$E ::= \emptyset \mid \varepsilon \mid a \mid (E \mid E) \mid (E \mid E) \mid E^{\star}$$

where $a \in \Sigma$.

• Regular expression E defines a language $L(E) \subset \Sigma^*$

$$egin{array}{lll} L(\emptyset) &=& \emptyset & L(E_1 \ E_2) &=& \{uv \ | \ u \in L(E_1), \ v \in L(E_2)\} \ L(arepsilon) &=& \{arepsilon\} & L(E_1 \ | \ E_2) &=& L(E_1) \cup L(E_2) \ L(oldsymbol{a}) &=& \{u^i \ | \ w \in L(E), \ i \geq 0\} \end{array}$$

where $w^0 = \varepsilon$ and $w^{n+1} = ww^n$.

• Examples:

```
Regular expression Defined language  \begin{array}{cccc} a \mid b & \{a, \ b\} \\ abba & \{abba\} \\ ab^*a & \{aa, \ aba, \ abba, \ abbba, \ \ldots\} \\ (ab)^* & \{\varepsilon, \ ab, \ abab, \ ababab, \ \ldots\} \end{array}
```

- To minimize a number of needed parentheses, operators have priorities:
 - the closure operator $(\cdot)^*$ has highest priority;
 - the choice operator $(\cdot \mid \cdot)$ has lowest priority.

• A regular description over alphabet Σ is the set of rules

$$egin{array}{cccc} d_1 &
ightarrow & E_1 \ d_2 &
ightarrow & E_2 \ & \ldots \ d_n &
ightarrow & E_n \end{array}$$

where d_i is a (unique) name and E_i is a regular expression over alphabet $\Sigma \cup \{d_1, \ldots, d_{i-1}\}$.

- Short-hand notation for regular expressions:
 - nonempty closure: $E^+ = EE^*$;
 - option: $E? = \varepsilon \mid E$;
 - character classes: eg. $[a, b, c] = a \mid b \mid c$ or $[a z] = a \mid \ldots \mid z$.

Examples of regular descriptions:

Identifiers:

Letter
$$\rightarrow [a-z, A-Z]$$

Digit $\rightarrow [0-9]$
Identifier \rightarrow Letter (Letter | Digit)*

Numeric constants:

```
\begin{array}{lll} \text{Sign} & \rightarrow & (+ \mid -)? \\ \text{Integer} & \rightarrow & 0 \mid \text{Sign} [1 - 9] \, \text{Digit}^{\star} \\ \text{Decimal} & \rightarrow & \text{Integer} \, . \, \text{Digit}^{+} \\ \text{Real} & \rightarrow & (\text{Integer} \mid \text{Decimal}) \, \underline{\textbf{\textit{E}}} \, \text{Integer} \end{array}
```

Finite automata

- A finite automaton is the quintuple $A = \langle Q, \Sigma, \delta, q_0, F \rangle$, where
 - -Q is a finite set of states;
 - Σ is the finite alphabet;
 - $-\delta \subseteq Q \times (\Sigma \cup \varepsilon) \times Q$ is the transition relation;
 - $-q_0 \in Q$ is the initial state;
 - $F \subseteq Q$ is a set of final states.
- A finite automaton is deterministic (DFA), if the transition relation is a function $\delta: Q \times \Sigma \to Q$.
- Otherwise, the finite automaton is nondeterministic (NFA).

Finite automata

 Finite automata can be represented by state transition diagrams:

• The finite automaton $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ accepts the language

$$L(A) = \{w \in \Sigma^\star \mid (q_0, w, q_f) \in \delta^\star, \; q_f \in F\}$$

where $\delta^* \subseteq Q \times \Sigma^* \times Q$ is a reflexive and transitive closure of the transition relation δ .

• Theorem: The class of languages accepted by finite automata is that of regular languages.

Converting a regular expression to an automaton

Thompson's construction for converting a regular expression to NFA:

• for a regular expression E construct the "automaton":

• transform the "automaton" using following rules until all transitions have only simple labels (ie. ε or a character):

Converting a regular expression to an automaton

Converting a regular expression to an automaton

Converting a regular expression to an automaton Example:

Converting a regular expression to an automaton Example:

- Given NFA $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ construct an equivalent DFA $A' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ by subset construction.
- Auxiliary functions:
 - the ε -closure function ε -closure : $2^Q \to 2^Q$

$$\varepsilon ext{-closure}(S) = \{p \mid q \in S, \ (q, \varepsilon, p) \in \delta^\star\}$$

- the single step function $move: 2^Q \times \Sigma \rightarrow 2^Q$

$$move(S, a) = \{p \mid q \in S, \ (q, a, p) \in \delta\}$$

Algorithm:

```
Q' := \emptyset; F' := \emptyset; \delta' := \emptyset;
q'_0 := \varepsilon \text{-}closure(\{q_0\}); \ U := \{q'_0\};
while \exists S \in U do
   U := U \setminus S; Q' := Q' \cup \{S\};
    foreach a \in \Sigma do
       T := \varepsilon-closure(move(S, a));
       if T \notin U \cup Q' then U := U \cup \{T\};
       \delta' := \delta' \cup \{(S, a) \mapsto T\};
   end
end
F' := \{ S \in Q' \mid S \cap F \neq \emptyset \};
```


• DFA constructed from the regular expression $a(a \mid b)^*$:

• An equivalent smaller DFA:

- DFA is minimal if there is no smaller DFA accepting the same language.
- For every DFA $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ there exists an (unique) equivalent minimal DFA $A' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$.
- Idea: partition the set of states into equivalence classes.
 - States $p, q \in Q$ are equivalent or indistinguishable if automata having these as initial states accept the same language (ie. for any word $w \in \Sigma^*$ if one succeeds (resp. fails), the other one does the same, and vice versa).
 - For every letter, the transition function transformes equivalent states to equivalent states.

Minimization algorithm:

- Remove all states unreachable from the initial state q_0 .
- On the remaining set of states find the biggest partition Π into equivalence classes.
- Construct the new automaton $A' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$, where
 - the set of states is $Q' = \Pi$;
 - the initial state is $q_0' = P_0$, where $P_0 \in \Pi$ and $q_0 \in P_0$;
 - the set of final states is $F' = \{ P \in \Pi \mid P \cap F \neq \emptyset \};$
 - the transition function is

$$\delta' = \{(P_i,a) \mapsto P_j \mid P_j \in move(P_i,a)\}.$$

Naive algorithm for finding partition:

```
P := \{F, Q \setminus F\};
\operatorname{\mathbf{do}} \Pi := P; \ P := \emptyset;
   foreach S \in \Pi do
       for each a \in \Sigma do
          U := \{T \in \Pi \mid T \cap move(S, a) \neq \emptyset\};
          V := \{S \cap move_{\sigma}^{-1}(T) \mid T \in U\};
          P := P \cup V;
       end
   end
until \Pi = P;
```

- Naive algorithm tries to split all partition at every iteration.
 - In worst case has a quadradic complexity.
 - It is enough to consider only these partitions from which one can move to some split partition.
- Hopcroft's algorithm for finding the partition:
 - uses work-list for non-examined split partitions;
 - if a partition not in the work-list is split, then only one (smaller) subpartition is put to the work-list.

Hopcroft's algorithm:

```
\Pi := \{F, Q \setminus F\}; W := \Pi;
while \exists S \in W do
   W := W \setminus S;
   foreach a \in \Sigma do
      P := move_{\sigma}^{-1}(S);
      for each R \in \{T \in \Pi \mid T \cap P \neq \emptyset, T \not\subseteq P\} do
         R_1 := R \cap P; \ R_2 := R \setminus R_1;
         \Pi := (\Pi \setminus R) \cup \{R_1, R_2\};
         if R \in W then W := (W \setminus R) \cup \{R_1, R_2\};
         else if |R_1| < |R_2| then W := W \cup \{R_1\};
                                     else W := W \cup \{R_2\};
      end
   end
end
```


Format of the input file:

• An input file of Flex has three parts:

```
definitions
%%
rules
%%
user code
```

- The definition part consits of:
 - C code (included header files, definitions of global variables);
 - regular descriptions;
 - definitions of start conditions.

• The rules part consits of a sequence of pairs:

pattern action

where the pattern must start without indentation and ends with the first empty symbol; the action must start on the same line as is the pattern.

- A pattern is a (extended) regular expression; an action is an arbitrary C statement.
 - If action is empty, the input corresponding to the pattern is removed.
 - If input doesn't match with any pattern then it is copied to the output.
- The third part of the Flex input file is a C code which is copied to the generated file lex.yy.c in verbatim.
 - May be absent in which case the second separator is also not required.

Interface for a parser:

int yylex(void) the main function; returns the class of the

recognized word; and 0 at EOF

char *yytext points to the last scanned word

int yyleng the length of the last scanned word

FILE *yyin the default input file FILE *yyout the default output file

int yywrap(void) should be defined in the third part; if not

then use '-1f1' when linking; usually re-

turns simply 1

YYSTYPE yylval the structure containing a value of the

symbol; defined in the parser (in the inc-

luded header fail parser.tab.h)