
Lexical analysis

Lexical analysis
Lexical analysis checks the correctness of program words
and transforms a program to the stream of tokens:
– removes empty symbols and commentaries;
– identifies keywords, indentifiers and literal constants;
– constructs a symbol table;
– finds line/column numbers of symbols;
– informs about lexical errors when necessary.
Lexical analysis is also called scanning and the
corresponding analyser is called scanner.

Regular expressions
Regular expressions over (finite) alphabet �

E ::= ; j " j a j (E E) j (E j E) j E?

where a 2 �.
Regular expression E defines a language L(E) � �?

L(;) = ; L(E1 E2) = fuv j u 2 L(E1); v 2 L(E2)g
L(") = f"g L(E1 j E2) = L(E1) [L(E2)
L(a) = fag L(E?) = fwi j w 2 L(E); i � 0g

where w0 = " and wn+1 = wwn.

Regular expressions
Examples:

Regular expression Defined language
a j b fa; bg
abba fabbag
ab?a faa; aba; abba; abbba; : : :g
(ab)? f"; ab; abab; ababab; : : :g

To minimize a number of needed parentheses, operators
have priorities:
– the closure operator (�)? has highest priority;
– the choice operator (� j �) has lowest priority.

Regular expressions
A regular description over alphabet � is the set of rules

d1 ! E1

d2 ! E2

: : :

dn ! En

where di is a (unique) name and Ei is a regular expression
over alphabet � [fd1; : : : ; di�1g.
Short-hand notation for regular expressions:
– nonempty closure: E+ = EE?;
– option: E? = " j E;
– character classes: eg. [a; b; c] = a j b j c or

[a� z] = a j : : : j z.

Regular expressions
Examples of regular descriptions:

Identifiers:
Letter ! [a� z; A� Z]
Digit ! [0� 9]
Identifier ! Letter (Letter j Digit)?

Numeric constants:
Sign ! (+ j �)?
Integer ! 0 j Sign [1� 9]Digit?

Decimal ! Integer :Digit+

Real ! (Integer j Decimal)E Integer

Finite automata
A finite automaton is the quintuple A = hQ;�; �; q0; F i,
where
– Q is a finite set of states;
– � is the finite alphabet;
– � � Q� (� [")�Q is the transition relation;
– q0 2 Q is the initial state;
– F � Q is a set of final states.
A finite automaton is deterministic (DFA), if the transition
relation is a function � : Q� � ! Q.
Otherwise, the finite automaton is nondeterministic (NFA).

Finite automata
Finite automata can be represented by state transition
diagrams:

q0 q1 q2
a a

b

The finite automaton A = hQ;�; �; q0; F i accepts the
language

L(A) = fw 2 �? j (q0; w; qf) 2 �?; qf 2 Fg

where �? � Q� �? �Q is a reflexive and transitive closure
of the transition relation �.
Theorem: The class of languages accepted by finite
automata is that of regular languages.

Converting a regular expression to an automaton
Thompson’s construction for converting a regular expression to
NFA:

for a regular expression E construct the ”automaton”:

q0 qf
E

transform the ”automaton” using following rules until all
transitions have only simple labels (ie. " or a character):

q p

q p

q p

q q1 p

q p

q q1 q2 p

E1 E2

E1 jE2

E?

E1 E2

E1

E2

" "

E

"

"

Converting a regular expression to an automaton
Example:

q0 qf q0 q1 qf

q0 q1 q2 q3 qf

q0 q1 q2 q3 qf

a (a j b)? a (a j b)?

a " "

a j b

"

"

a " b "

a

"

"

Converting a regular expression to an automaton
Example:

q0 qf q0 q1 qf

q0 q1 q2 q3 qf

q0 q1 q2 q3 qf

a (a j b)? a (a j b)?

a " "

a j b

"

"

a " b "

a

"

"

Converting a regular expression to an automaton
Example:

q0 qf q0 q1 qf

q0 q1 q2 q3 qf

q0 q1 q2 q3 qf

a (a j b)? a (a j b)?

a " "

a j b

"

"

a " b "

a

"

"

Converting a regular expression to an automaton
Example:

q0 qf q0 q1 qf

q0 q1 q2 q3 qf

q0 q1 q2 q3 qf

a (a j b)? a (a j b)?

a " "

a j b

"

"

a " b "

a

"

"

Constructing DFA
Given NFA A = hQ;�; �; q0; F i construct an equivalent
DFA A0 = hQ0;�; �0; q00; F

0i by subset construction.
Auxiliary functions:
– the "-closure function "-closure : 2Q ! 2Q

"-closure(S) = fp j q 2 S; (q; "; p) 2 �?g

– the single step function move : 2Q � � ! 2Q

move(S; a) = fp j q 2 S; (q; a; p) 2 �g

Constructing DFA
Algorithm:

Q0 := ;; F 0 := ;; �0 := ;;
q00 := "-closure(fq0g); U := fq00g;
while 9S 2 U do
U := U n S; Q0 :=Q0 [fSg;
foreach a 2 � do
T := "-closure(move(S; a));
if T 62 U [Q0 then U := U [fTg;
�0 := �0 [f(S; a) 7! Tg;

end
end
F 0 := fS 2 Q0 j S \ F 6= ;g;

Constructing DFA
Example:

q0 q1 q2 q3 qf
a " b "

a

"

"

Constructing DFA
Example:

q0 q1 q2 q3 qf

q
0

0

a " b "

a

"

"

Constructing DFA
Example:

q0 q1 q2 q3 qf

q
0

0 q
0

1

a " b "

a

"

"

a

Constructing DFA
Example:

q0 q1 q2 q3 qf

q
0

0 q
0

1 q
0

2

a " b "

a

"

"

a

a

b

Constructing DFA
Example:

q0 q1 q2 q3 qf

q
0

0 q
0

1 q
0

2

a " b "

a

"

"

a

a

b

a

b

Constructing DFA
Example:

q0 q1 q2 q3 qf

q
0

0 q
0

1 q
0

2

a " b "

a

"

"

a

a

b

a

b

Minimizing DFA
DFA constructed from the regular expression a(a j b)?:

q0 q1 q2
a

a

b

a

b

An equivalent smaller DFA:

q0 q1
a

a

b

Minimizing DFA
DFA is minimal if there is no smaller DFA accepting the
same language.
For every DFA A = hQ;�; �; q0; F i there exists an (unique)
equivalent minimal DFA A0 = hQ0;�; �0; q00; F

0i.
Idea: partition the set of states into equivalence classes.
– States p; q 2 Q are equivalent or indistinguishable if
automata having these as initial states accept the same
language (ie. for any word w 2 �? if one succeeds (resp.
fails), the other one does the same, and vice versa).

– For every letter, the transition function transformes
equivalent states to equivalent states.

Minimizing DFA
Minimization algorithm:

Remove all states unreachable from the initial state q0.
On the remaining set of states find the biggest partition �
into equivalence classes.
Construct the new automaton A0 = hQ0;�; �0; q00; F

0i, where

– the set of states is Q0 = �;
– the initial state is q00 = P0, where P0 2 � and q0 2 P0;
– the set of final states is F 0 = fP 2 � j P \ F 6= ;g;
– the transition function is
�0 = f(Pi; a) 7! Pj j Pj 2 move(Pi; a)g.

Minimizing DFA
Naive algorithm for finding partition:

P := fF; Q n Fg;
do � := P ; P := ;;

foreach S 2 � do
foreach a 2 � do
U := fT 2 � j T \move(S; a) 6= ;g;
V := fS \move

�1
a (T) j T 2 Ug;

P := P [V ;
end

end
until � = P ;

Minimizing DFA
Naive algorithm tries to split all partition at every
iteration.
– In worst case has a quadradic complexity.
– It is enough to consider only these partitions from which
one can move to some split partition.

Hopcroft’s algorithm for finding the partition:
– uses work-list for non-examined split partitions;
– if a partition not in the work-list is split, then only one
(smaller) subpartition is put to the work-list.

Minimizing DFA
Hopcroft’s algorithm:

� := fF; Q n Fg; W := �;
while 9S 2W do
W :=W n S;
foreach a 2 � do
P :=move

�1
a (S);

foreach R 2 fT 2 � j T \ P 6= ;; T 6� Pg do
R1 :=R \ P ; R2 :=R nR1;
� := (� nR) [fR1; R2g;
if R 2W then W := (W nR) [fR1; R2g;
else if jR1j � jR2j then W := W [fR1g;

else W := W [fR2g;
end

end
end

Minimizing DFA
Example – minimizing DFA corresponding to the regular
expression (a j b)?abb:

q0 q1 q3 q4

q2

a b b

a

a

a

b
a

b

b

Minimizing DFA
Example – minimizing DFA corresponding to the regular
expression (a j b)?abb:

q0 q1 q3 q4

q2

a b b

a

a

a

b
a

b

b

Minimizing DFA
Example – minimizing DFA corresponding to the regular
expression (a j b)?abb:

q0 q1 q3 q4

q2

a b b

a

a

a

b
a

b

b

Minimizing DFA
Example – minimizing DFA corresponding to the regular
expression (a j b)?abb:

q0 q1 q3 q4

q2

a b b

a

a

a

b
a

b

b

Minimizing DFA
Example – minimizing DFA corresponding to the regular
expression (a j b)?abb:

q0 q1 q3 q4

q2

a b b

a

a

a

b
a

b

b

Minimizing DFA
Example – minimizing DFA corresponding to the regular
expression (a j b)?abb:

q0 q1 q3 q4
a b b

a

a

a

b b

Scanner generator Flex

foo.l

flex

lex.yy.c gcc

file.foo

a.out

tokens

Scanner generator Flex
Format of the input file:

An input file of Flex has three parts:

definitions

%%

rules

%%

user code

The definition part consits of:
– C code (included header files, definitions of global
variables);

– regular descriptions;
– definitions of start conditions.

Scanner generator Flex
The rules part consits of a sequence of pairs:
pattern action

where the pattern must start without indentation and ends
with the first empty symbol; the action must start on the
same line as is the pattern.
A pattern is a (extended) regular expression; an action is
an arbitrary C statement.
– If action is empty, the input corresponding to the
pattern is removed.

– If input doesn’t match with any pattern then it is copied
to the output.

The third part of the Flex input file is a C code which is
copied to the generated file lex.yy.c in verbatim.
– May be absent in which case the second separator is also
not required.

Scanner generator Flex
Interface for a parser:
int yylex(void) the main function; returns the class of the

recognized word; and 0 at EOF
char *yytext points to the last scanned word
int yyleng the length of the last scanned word
FILE *yyin the default input file
FILE *yyout the default output file
int yywrap(void) should be defined in the third part; if not

then use ’-lfl’ when linking; usually re-
turns simply 1

YYSTYPE yylval the structure containing a value of the
symbol; defined in the parser (in the inc-
luded header fail parser.tab.h)

	Lexical analysis

