Register allocation



Register allocation

Overview
@ Variables may be stored in the main memory or in
registers.
— Main memory is much slower than registers.
— The number of registers is strictly limited.

@ The goal of register allocation is to decrease the number of
memory accesses by keeping as many as possible variables
in registers.

— Decides which values to keep in registers and which in
memory.
— Assigns concrete registers for values which are kept there.




Register allocation

Observations

@ Usually there are less registers than variables.

o Simultaneously alive varibles cannot be allocated to the
same register.

@ Variables which life times do not overlap can be allocated to
the same register.

@ These constraints can be represented as an interference
graph:
— nodes are variables;
— edges are between simultaneously alive variables.

o Register allocation can be stated as a graph coloring problem
of the interference graph with & colors (Lavrov 1962, Chaitin
1981)

— k = the number of registers.




Register allocation

a b c
{a}
b=a+2
{a,b}
c=b*b
{a,c}
b=c+1
{a,b}
return b*a
Code Live sets Live ranges

Interference graph



Register allocation

a b c
{a}
b=a+2
{a,b}
c=b*b
{a,c}
b=c+1
{a,b}
return b*a
Code Live sets Live ranges

Interference graph



Register allocation

a b c
{a}
b=a+2
{a,b}
c=b*b
{a,c}
b=c+1
{a,b}
return b*a
Code Live sets Live ranges
R2 = R1 + 2
R2 = R2 * R2 .
R2 =R2 +1

return R2*R1

Interference graph

8

] = Register 1 (R1)
[[] = Register 2 (R2)



Register allocation

Construction of the interference graph

@ To build the interference graph we need to determine live
ranges of variables.

@ In case of local register allocation inside basic blocks, all
live ranges are linear.
v’ Discovering live ranges and checking whether they
overlap is very easy.
X Variables have to be read from the memory before
entering to the basic block, and to be stored to the
memory when leaving.

@ In case of global register allocation, live ranges form a web.

X Discovering live ranges is more complex.
v Allows more efficient usage of registers.




Register allocation

def y

def x def x
def y use y

use x use x
use y def x




Register allocation

def y

def x def x
def y use y

use x use x
use y def x




Register allocation

def y

def x def x
def y use y

use x use x
use y def x




Register allocation

def x
def y

use X
use y

use x
def x

use X

def y

def x
use y




Register allocation

def x
def y

use X
use y

use X
def x

use X

def y

def x
use y




Register allocation

def x
def y

use X
use y

use x
def x

use X

def y

def x
use y




Register allocation

def x
def y

use X
use y

use X
def x

use X

def y

def x
use y




Register allocation

Webs s1 and s2 overlap

Webs s1 and s4 overlap
def y

def x def x
def y use y
sl
s2
use X use X
use y def x
s3

use X



Graph coloring

Definition

A graph G is k-colorable iff its nodes can be labeled with
integers 1...k so that no edge in G connects two nodes with
the same label.

Main questions
o How to find efficiently k-coloring of a graph?

o Whether and how to find an optimal coloring (ie. a
coloring with the minimum number of colors)?

e What to do when there are not enough colors (ie.
registers)?




Graph coloring

Problem
The graph coloring problem is NP-complete.

Observations
o Optimal algorithm works with all graphs.
— The "worst case graph” doesn’t appear in practice.

o It always finds a minimal coloring.
— Often, an approximate coloring is enough.




Graph coloring

Probleem
What to do if the graph is not k-colorable?
@ Ie. there is not enough registers?

@ Happens very often.

Spilling
@ Choose a variable and keep its values in the memory (ie. in
the stack) instead of an register.
— The process is called spilling.

@ Places where the variable is accessed, generate an extra
code for reading from and storing to the memory.




Graph coloring

Idea
o Pick a node witch has degree < k.
— This node is k-colorable!
o Remove the node (and all its edges) from the graph.

— All its neighbours have now degree decremented by one.
— May result to new nodes with degree < k.

o If all nodes have degree > k, then pick a node, spill it to
the memory, and continue.




Graph coloring

Chaitin’s algorithm
© Until there are nodes with degree < k:

— choose such node and push it into the stack;
— delete the node and all its edges from the graph.

© If the graph is non-empty (and all nodes have degree > k),

then:

— choose a node (using some heuristics) and spill it to the
memory;

— delete the node and all its edges from the graph.

— if this results to some nodes with degree < k, then go to
the step 1,

— otherwise continue with the step 2.

© Successively pop nodes off the stack and color them in the
lowest color not used by some neighbor.




Chaitin’s algorithm

Example:

Stack



Chaitin’s algorithm

Example:

Stack



Chaitin’s algorithm

Example:

: Go’o

Stack



Chaitin’s algorithm

Example:

4
2
1

Stack



Chaitin’s algorithm

Example:

= N B W

Stack



Chaitin’s algorithm

Example:
@)
: O
2 )
1

Stack Colors



Chaitin’s algorithm

Example:
@)
; ® @)
2 )

Stack Colors



Chaitin’s algorithm

Example:

o

o
: @

Stack Colors



Chaitin’s algorithm

Example:
@)

® ® O
: v o

Stack Colors



Chaitin’s algorithm

Example:

Stack

o
o
@

Colors



Chaitin’s algorithm

Example:

Stack Colors



Graph coloring

Optimistic coloring (Briggs et al)

o If all nodes have a degree > k, then instead of spilling
order the nodes and push them into stack.

— When taking nodes back from the stack they may still be
colorable!

@ The following graph is 2-colorable:




Graph coloring

Optimistic coloring (Briggs et al)

o If all nodes have a degree > k, then instead of spilling
order the nodes and push them into stack.

— When taking nodes back from the stack they may still be
colorable!

@ The following graph is 2-colorable:




Graph coloring

Chaitin-Briggs’i algoritm
© Until there are nodes with degree < k:
— choose such node and push it into the stack;
— delete the node and all its edges from the graph.
© If the graph is non-empty (and all nodes have degree > k),
then:
— choose a node, push it into the stack, and delete it
(together with edges) from the graph;
— if this results to some nodes with degree < k, then go to
the step 1;
— otherwise continue with the step 2.
© Pop a node from the stack and color it by the least free
color.

— If the is no free colors, then choose an uncolored node,
spill it into the memory, and go to the step 1.




Graph coloring

Spilling heuristics
@ Choosing a node for spilling is a critical for efficiency.
@ Chaitin’s heuristics:
— to minimize the value of dZZjZe, where cost is a spilling
cost and degree is a current degree of the node;
— ie. choose for spilling a "cheapest” possible node which
decreases the degree of most other nodes.

o Alternative popular metrics: #::62.
@ Variations:

— spilling of interference regions;

— partitioning of live ranges;

— rematerialization.




	Register allocation

