

Semantic analysis

- Semantic analysis checks for the correctness of contextual dependences:
 - finds correspondence between declarations and usage of identifiers,
 - performs type checking/inference,
 - ...
- Syntax tree is decorated with typing- and other context dependent information.

Semantic analysis

- Semantic analysis checks restrictions imposed by a static semantics of the language.
- Sometimes it is possible to expess semantic properties by context-free grammars, but usually this puts heavy restrictions to the language and/or complicates the grammar.
- Example simple typed expressions:

```
\begin{array}{c|cccc} \operatorname{IntExp} & \to & int & | & intVar \\ & & | & \operatorname{IntExp} + \operatorname{IntExp} \\ \operatorname{BoolExp} & \to & true & | & false \\ & | & boolVar \\ & | & \operatorname{IntExp} \leq \operatorname{IntExp} \\ & | & not & \operatorname{BoolExp} \\ & | & \operatorname{BoolExp} & \operatorname{BoolExp} \end{array}
```

Semantic analysis

- At first glance, the grammar looks reasonable, but:
 - the grammar has two different (lexical) classes for variables;
 - additional types require new classes of variables;
 - most languages do not put restrictions to variable names based on their types;
 - moreover, usually one is allowed to use the same variable name for variables of different types in different context.

- Attribute grammars are generalization of context-free grammars, where:
 - each grammar symbol has an associated set of attributes;
 - each production rule has a set of attribute evaluation rules (or semantic rules).
- The goal is to find an evaluation of attributes which is consistent with the given semantic rules.

Productions			Semantic rules		
N	\rightarrow	S L	L.pos	:=	0
			N.val	:=	S.neg*L.val
S	\rightarrow	+	S.neg	:=	1
S	\rightarrow	_	S.neg	:=	-1
L	\rightarrow	L_1 B	$L_1.pos$:=	L.pos + 1
			B.pos	:=	L.pos
			L.val	:=	$L_1.val + B.val$
L	\rightarrow	В	B.pos	:=	L.pos
			L.val	:=	B.val
В	\rightarrow	0	B.val		-
В	\rightarrow	1	B.val	:=	$2^{B.pos}$

- Semantic rules associated with a production $A \to \alpha$ are in the form $y = f(x_1, \ldots, x_n)$, where y and x_i are attributes associated with symbols in the production, and f is a function.
- There are two kinds of attributes:
 - synthesized attributes: y is an attribute associated with the non-terminal A;
 - inherited attributes: y is an attribute associated with some symbol in α .
- Synthesized attributes depend only attribute values of the subtrees.
- Inherited attributes may depend from the values of parent node and siblings.

Example:

Productions			Semantic rules				
N	\rightarrow	S L	L.pos	<u>*</u> :=	0		
			Nval	<u>:</u> =	S.neg*L.val		
\mathcal{S}	\rightarrow	+	S ₁ neg	:≠	1		
\mathcal{S}	\rightarrow	_ /	S_n neg	:⊨	-1		
L	\rightarrow	$L_1 B /$	I_1 . pos	/ =/	L.pos + 1		
			B.pos	<i>i</i> /= /	$\setminus L.pos$		
			L, val	:\\	$\backslash L_1.val + B.val$		
L	\rightarrow	B//	B. pos	/ <u>+</u> ;	L.pos		
	,		L. val	:≠/	$\backslash B$. val		
B	/ /	/0 / /	Br. val	:=\	\ Ø \		
В	/#/	1//	Br. val	:=	2B pos		

synthesized attributes

inherited attributes

- An attribute a depends from b if the evaluation of a requires the value of b.
- Dependencies between attributes define a dependency graph:
 - an directed graph, where edges show the dependencies between attributes;
 - describes the data flow during the attribute evaluation.
- Synthesized attributes have edges pointing upwards.
- Inherited attributes have edges pointing downwards and/or sidewise.

Example:

dependency graph

Example:

dependency graph

synthesized attributes

inherited attributes

Example:

dependency graph

Example:

dependency graph

Example:

dependency graph

- Topological sorting of a directed acyclic graph is a process of findig a linear ordering of its nodes, st., each node comes before all nodes to which it has outbound edges.
- Topological sorting of the dependency graph gives a valid evaluation ordering for attributes.
- NB! In the case of cyclic dependency graphs a valid ordering may not exist.

- S-attribute grammar is an AG where all attributes are synthesized.
- S-attribute grammars interact well with LR(k)-parsers since the evaluation of attributes is bottom-up.
- The values of attributes can be kept together with the associated symbol in the stack.
- Before reducution by production $A \to \alpha$, attributes corresponding to symbols of α are available in top of the stack.
- Hence, all the information for evaluating synthesized attributes of A are available, and these can be computed during reduction.

- L-attribute grammar is an AG where for all productions $A \to X_1 X_2 \dots X_n$ inherited attributes of symbol X_i $(1 \le i \le n)$ depend only from inherited attributes of A and from attributes of symbols X_j (j < i).
- NB! Each S-attribute grammar is also a L-attribute grammar.
- L-attribute grammars support the evaluation of attributes in depth-first left-to-right order.
- Interacts well with LL(k) parsers (both table driven and recursive decent).