
Semantic analysis



Semantic analysis

Semantic analysis checks for the correctness of contextual
dependences:

{ �nds correspondence between declarations and usage of
identi�ers,

{ performs type checking/inference,
{ . . .

Syntax tree is decorated with typing- and other context de-
pendent information.



Semantic analysis

Semantic analysis checks restrictions imposed by a static
semantics of the language.

Sometimes it is possible to expess semantic properties by
context-free grammars, but usually this puts heavy restric-
tions to the language and/or complicates the grammar.

Example { simple typed expressions:

IntExp ! int j intV ar

j IntExp + IntExp

BoolExp ! true j false

j boolV ar

j IntExp � IntExp

j not BoolExp

j BoolExp & BoolExp



Semantic analysis

At �rst glance, the grammar looks reasonable, but:

{ the grammar has two di�erent (lexical) classes for
variables;

{ additional types require new classes of variables;

{ most languages do not put restrictions to variable names
based on their types;

{ moreover, usually one is allowed to use the same variable
name for variables of di�erent types in di�erent context.



Attribute grammars

Attribute grammars are generalization of context-free gram-
mars, where:

{ each grammar symbol has an associated set of attributes;
{ each production rule has a set of attribute evaluation rules
(or semantic rules).

The goal is to �nd an evaluation of attributes which is con-
sistent with the given semantic rules.



Attribute grammars

Example:

Productions Semantic rules

N ! S L L:pos := 0

N:val := S:neg � L:val

S ! + S:neg := 1

S ! � S:neg := �1

L ! L1 B L1:pos := L:pos + 1

B:pos := L:pos

L:val := L1:val +B:val

L ! B B:pos := L:pos

L:val := B:val

B ! 0 B:val := 0

B ! 1 B:val := 2B:pos



Attribute grammars

Example:

� 1 0 1

B

L

B

L

B

L

S

N

neg = �1

pos = 2

val = 4

pos = 2

val = 4

pos = 1

val = 0

pos = 1

val = 4

pos = 0

val = 1

pos = 0

val = 5

val = �5



Attribute grammars

Semantic rules associated with a production A ! � are in
the form y = f(x1; : : : ; xn), where y and xi are attributes
associated with symbols in the production, and f is a func-
tion.

There are two kinds of attributes:

{ synthesized attributes: y is an attribute associated with
the non-terminal A;

{ inherited attributes: y is an attribute associated with
some symbol in �.

Synthesized attributes depend only attribute values of the
subtrees.

Inherited attributes may depend from the values of parent
node and siblings.



Attribute grammars

Example:

Productions Semantic rules

N ! S L L:pos := 0

N:val := S:neg � L:val

S ! + S:neg := 1

S ! � S:neg := �1

L ! L1 B L1:pos := L:pos + 1

B:pos := L:pos

L:val := L1:val +B:val

L ! B B:pos := L:pos

L:val := B:val

B ! 0 B:val := 0

B ! 1 B:val := 2B:pos

synthesized attributes inherited attributes



Attribute grammars

An attribute a depends from b if the evaluation of a requires
the value of b.

Dependencies between attributes de�ne a dependency graph:

{ an directed graph, where edges show the dependencies
between attributes;

{ describes the data 
ow during the attribute evaluation.

Synthesized attributes have edges pointing upwards.

Inherited attributes have edges pointing downwards and/or
sidewise.



Attribute grammars

Example:

� 1 0 1

B

L

B

L

B

L

S

N

neg = �1

pos = 2

val = 4

pos = 2

val = 4

pos = 1

val = 0

pos = 1

val = 4

pos = 0

val = 1

pos = 0

val = 5

val = �5

synthesized attributes

inherited attributes

dependency graph



Attribute grammars

Example:

� 1 0 1

B

L

B

L

B

L

S

N

neg = �1

pos = 2

val = 4

pos = 2

val = 4

pos = 1

val = 0

pos = 1

val = 4

pos = 0

val = 1

pos = 0

val = 5

val = �5

synthesized attributes

inherited attributes

dependency graph



Attribute grammars

Example:

� 1 0 1

B

L

B

L

B

L

S

N

neg = �1

pos = 2

val = 4

pos = 2

val = 4

pos = 1

val = 0

pos = 1

val = 4

pos = 0

val = 1

pos = 0

val = 5

val = �5

synthesized attributes

inherited attributes

dependency graph



Attribute grammars

Example:

� 1 0 1

B

L

B

L

B

L

S

N

neg = �1

pos = 2

val = 4

pos = 2

val = 4

pos = 1

val = 0

pos = 1

val = 4

pos = 0

val = 1

pos = 0

val = 5

val = �5

synthesized attributes

inherited attributes

dependency graph



Attribute grammars

Example:

� 1 0 1

B

L

B

L

B

L

S

N

neg = �1

pos = 2

val = 4

pos = 2

val = 4

pos = 1

val = 0

pos = 1

val = 4

pos = 0

val = 1

pos = 0

val = 5

val = �5

synthesized attributes

inherited attributes

dependency graph



Attribute grammars

Topological sorting of a directed acyclic graph is a process
of �ndig a linear ordering of its nodes, st., each node comes
before all nodes to which it has outbound edges.

Topological sorting of the dependency graph gives a valid
evaluation ordering for attributes.

NB! In the case of cyclic dependency graphs a valid ordering
may not exist.



Attribute grammars

Example:

� 1 0 1

B

L

B

L

B

L

S

N

neg = �1

pos = 2

val = 4

pos = 2

val = 4

pos = 1

val = 0

pos = 1

val = 4

pos = 0

val = 1

pos = 0

val = 5

val = �5



Attribute grammars

Example:

� 1 0 1

B

L

B

L

B

L

S

N

neg = �1

pos = 2

val = 4

pos = 2

val = 4

pos = 1

val = 0

pos = 1

val = 4

pos = 0

val = 1

pos = 0

val = 5

val = �5

1

2

3

4

5

6

7

8

9

10

11

12



Attribute grammars

S-attribute grammar is an AG where all attributes are
synthesized.

S-attribute grammars interact well with LR(k)-parsers
since the evaluation of attributes is bottom-up.

The values of attributes can be kept together with the
associated symbol in the stack.

Before reducution by production A ! �, attributes
corresponding to symbols of � are available in top of the
stack.

Hence, all the information for evaluating synthesized
attributes of A are available, and these can be computed
during reduction.



Attribute grammars

L-attribute grammar is an AG where for all productions
A ! X1X2 : : : Xn inherited attributes of symbol Xi

(1 � i � n) depend only from inherited attributes of A and
from attributes of symbols Xj (j < i).

NB! Each S-attribute grammar is also a L-attribute
grammar.

L-attribute grammars support the evaluation of attributes
in depth-�rst left-to-right order.

Interacts well with LL(k) parsers (both table driven and
recursive decent).


	Semantic analysis
	Attribute grammars


