
CMa | simple C Abstract Machine



CMa architecture

An abstract machine has set of instructions which can be
executed in an abstract hardware.

The abstract hardware may be seen as a collection of certain
data structures used by instructions

. . . and controlled by the run-time system.



CMa architecture

Stack:

SP

10

S

S = Stack | memory area for data where insertion
and deletion of items uses LIFO principle.

SP = Stack-Pointer | register containing an address
of the topmost item.

Simpli�cation: all non-structural values are of the same size
and �t into a single cell of the stack.



CMa architecture

Code:

PC

10

C

C = Code-store | memory area for a program code;
each cell contains a single AM instruction.

PC = Program Counter | register containing an address
of the instruction to be executed next.

Initially, PC contains the address 0; ie. C[0] contains the �rst
instruction of the program.



CMa architecture

Execution of the program:

Machine loads an instruction at C[PC] to the register IR
(Instruction-Register), then increments the program counter
PC, and �nally executes the instruction:

while (true) {
IR = C[PC]; PC++;

execute (IR);

}
Execution of an instruction (eg. jump) may change the con-
tents of the program counter PC.

The main loop of the machine is stopped by the instruction
halt, which returns the control back to the environment.

We will introduce the rest of the instructions step by step
as necessary.



Simple expressions and assignment

Problem: evaluate an expression like (6 + 2) � 4� 1;
i.e. generate a sequence of instructions which

�nds the value of the expression, and

pushes it to top of the stack.

Idea:

�rst evaluate subexpressions,

save these values to top of the stack, and

execute an instruction corresponding to the operator.



Simple expressions and assignment

General principles:

instructions assume arguments to be in topmost cells of the
stack,

an execution of the instruction consumes its arguments,

the result is saved in top of the stack.

loadc q

q
SP++;

S[SP] = q;

Instruction loadc q doesn't have arguments and pushes the con-
stant q to top of the stack.

NB! In pictures, the contents of SP is represented implicitly by
the height of the stack.



Simple expressions and assignment

mul

217

3

SP--;

S[SP] = S[SP] � S[SP+1];

The instruction mul assumes two arguments in the stack, con-
sumes them, and pushes their product to top of the stack

Instructions corresponding to other arithmetic and logic
operators add, sub, div, mod, and, or, xor, eq, neq, le, leq, ge
and geq work analogously.



Simple expressions and assignment

Example: operator leq

leq

13

7

NB! The integer 0 represents the boolean "false"; all other
integers represent "true".



Simple expressions and assignment

Unary operators neg and not consume one argument and
produce a single result value:

neg

-77

S[SP] = -S[SP];

not

03 if (S[SP] 6= 0)
S[SP] = 0;

else

S[SP] = 1;



Simple expressions and assignment

Example: code for the expression 1 + 7:

loadc 1

loadc 7

add

Execution of the code results:

loadc 1 loadc 7 add

1 1

7

8



Simple expressions and assignment

Variables correspond to cells of the stack S:

x:

y:

Code generation is speci�ed in terms of functions code,
codeL and codeR.

Parameters: a syntactic construction to be compiled and
an address environment (ie. a function mapping variables
to their relative addresses in the stack).



Simple expressions and assignment

Variables are used in two di�erent ways.

For instance, in the assignment x = y+1 we are interested of
the value of the variable y, but of the address of the variable
x.

The syntactic placement of a variable determines whether
we need its L-value or R-value.

L-value of a variable = its address
R-value of a variable = its "real" value

Function codeL e � emits a code computing a L-value of the
expression e in the environment �.

Function codeR e � does the same for the R-value.

NB! Not every expression has a L-value (eg.: x+ 1).



Simple expressions and assignment

Compilation of binary operators:

codeR (e1 + e2) � = codeR e1 �

codeR e2 �

add

{ Similarly for other binary operators.

Compilation of unary operators:

codeR (�e) � = codeR e �

neg

{ Similarly for other unary operators.

Compilation of primitive constant values:

codeR q � = loadc q



Simple expressions and assignment

Compilation of variables:

codeL x � = loadc (� x)
codeR x � = codeL x �

load

Compilation of assignment expressions:

codeR (x = e) � = codeR e �

codeL x �

store



Simple expressions and assignment

Instruction load copies the contents of the stack cell pointed by
the argument to top of the stack:

load

7 7

7

S[SP] = S[S[SP]];



Simple expressions and assignment

Instruction store saves the contents of the second cell to the
stack cell pointed by the topmost cell, but leaves the second cell
to top of the stack:

store

7

77

S[S[SP]] = S[SP-1];

SP--;

NB! Di�ers from the analogous P-machine instruction in the
Wilhelm/Maurer book.



Simple expressions and assignment

Example: let e � (x = y � 1) and � = fx 7! 4; y 7! 7g,

then codeR e � emits the code:

loadc 7

load

loadc 1

sub

loadc 4

store

Optimization: introduce special instructions for frequently
occurring combinations of instructions, e.g.:

loada q = loadc q

load

storea q = loadc q

store



Statements and their sequences

If e is an expression, then e; is a statement.

A statement doesn't have any arguments, nor have a value.

Hence, the contents of the register SP must remain un-
changed after the execution of the code corresponding to
the statement.

code (e; ) � = codeR e �

pop

code (s ss) � = code s �

code ss �

code " � = // empty sequence

Instruction pop removes the topmost stack cell:

pop

7

SP--;



Conditional statements and loops

For simplicity, we use symbolic labels as targets of jumps,
which later are replaced by absolute addresses.

Instead of absolute addresses we could use relative addresses;
i.e. relative w.r.t. the actual value of PC.

Advantages of the last approach are:

{ in general, relative addresses are smaller;
{ the code is relocatable.



Conditional statements and loops

Instruction jump A performs an unconditional jump to the
address A; the stack doesn't change:

jump A

PC PC A

PC = A;



Conditional statements and loops

Instruction jumpz A performs a conditional jump; it jumps to
the address A only if the topmost stack cell contains 0:

jumpz A

PC PC

jumpz A

PCPC

0
A

3

if (S[SP] = 0)
PC = A;

SP--;



Conditional statements and loops

Compilation of if-statements s � if (e) s1:

generate a code for the condition e and statement s1;

insert the conditional jump instruction in between.

code (if (e) s1) � =
codeR e �

jumpz A

code s1 �

A: . . .

jumpz

codeR for e

code for s1



Conditional statements and loops

Compilation of if-else-statements s � if (e) s1 else s2:

code (if (e) s1 else s2) � =
codeR e �

jumpz A

code s1 �

jump B

A: code s2 �

B: . . .

jumpz

jump

codeR for e

code for s1

code for s2



Conditional statements and loops

Example: let � = fx 7! 4; y 7! 7g and

s � if (x > y) (i)
x = x� y; (ii)

else y = y � x; (iii)

then code s � emits a code:

loada 4

loada 7

ge

jumpz A

(i)

loada 4

loada 7

sub

storea 4

pop

jump B

(ii)

A: loada 7
loada 4

sub

storea 7

pop

B: . . .
(iii)



Conditional statements and loops

Compilation of while-loops s � while (e) s1:

code (while (e) s1) � =
A: codeR e �

jumpz B

code s1 �

jump A

B: . . .

jumpz

jump

codeR for e

code for s1



Conditional statements and loops

Example: let � = fa 7! 7; b 7! 8; c 7! 9g and

s � while (a > 0) f (i)
c = c+ 1; (ii)
a = a� b; (iii)

g
then code s � emits a code:

A: loada 7
loadc 0

ge

jumpz B

(i)

loada 9

loadc 1

add

storea 9

pop

(ii)

loada 7

loada 8

sub

storea 7

pop

(iii)

jump A

B: . . .



Conditional statements and loops

A for-loop s � for (e1; e2; e3) s1 is equivalent with the
while-loop e1; while (e2) fs1 e3; g (assuming, that s1
doesn't contain any continue-statements)

code (for (e1; e2; e3) s1) � = codeR e1 �

pop

A: codeR e2 �

jumpz B

code s1 �

codeR e3 �

pop

jump A

B: . . .



Conditional statements and loops

In general, switch-statements should be translated into nested
if-statements:
switch (e) f
case c0 : ss0 break;
case c1 : ss1 break;

. . .
case ck�1: ssk�1 break;
default : ssk

g

=)

x = e;
if (x == c0) ss0
else if (x == c1) ss1

. . .
else if (x == ck�1) ssk�1
else ssk

By sorting the labels and using binary search, it's possible
to decrease the number of comparisons to the logarithm of
the number of labels.



Conditional statements and loops

In speci�c cases it's possible to have a constant time
branching.

Consider a switch-statement in the form:

s � switch (e) f
case 0 : ss0 break;
case 1 : ss1 break;

. . .
case k�1 : ssk�1 break;
default : ssk

g



Conditional statements and loops

code s � = codeR e �

check 0 k B
C0: code ss0 �

jump D

. . .
Ck: code ssk �

jump D

B: jump C0
. . .
jump Ck

D: . . .

Macro check 0 k B tests whether the R-value of the condition
is in between [0; k], and then performs an indexed jump.

An i-th element of the "jump table" B contains a uncondi-
tional jump instruction to the beginning of the code corre-
sponding to the i-th branch.

Each branch ends with the unconditional jump.



Conditional statements and loops

check 0 k B = dup

loadc 0

geq

jumpz A

dup

loadc k

le

jumpz A

jumpi B

A: pop
loadc k

jumpi B

The R-value of the condition is used both for comparison and
indexing, hence it must be duplicated before comparisons.

If R-value is not in between [0; k], it will be replaced by the
constant k before the jump.



Conditional statements and loops

Instruction dup duplicates the topmost cell of the stack:

dup

3

3

3 S[SP+1] = S[SP];

SP++;



Conditional statements and loops

Instruction jumpi A performs an indexed jump:

jumpi A

PC PC
i

A+i

PC = A + S[SP];

SP--;



Conditional statements and loops

Jump table B may be placed just after the macro check; it
allows to save some unconditional jumps.

If the range of values starts with u (and is not 0), then u

must be subtracted from the R-value of e before indexing.

If all potential values of e are in range [0; k], then the
macro check is not needed.



Arrays, records and static memory management

Goal: statically (i.e. compile-time) to bind with each vari-
able x a �xed (relative) address � x.

We assume that variables of primitive types (e.g. int, . . . )
�t into a single memory cell.

Bind variables to addresses starting from 1 using their dec-
laration order.

Hence, in the case of declarations d � t1 x1; : : : tk xk; (where
ti is primitive type) we get an address environment � s.t.

� xi = i; i = 1; : : : ; k



Arrays, records and static memory management

Array is a sequence of memory cells.

Uses integer indices for an access of its individual elements.

Example: declaration int[11]a; de�nes an array with 11
elements.

a[10]

a[1]

a[0]



Arrays, records and static memory management

De�ne a function sizeof (notation j � j) which �nds the
required memory amount to represent a value of a given
type:

jtj =

(
1 if t is a primitive type
k � jt0j if t � t0[k]

Hence, in the case of declarations d � t1 x1; : : : tk xk;

� x1 = 1
� xi = � xi�1 + jti�1j i > 1

Since j � j can be computed compile-time, it is also possible
to compute the address environment � in compile-time.



Arrays, records and static memory management

Let t a[c]; be an array declaration.

Then, the address of its i-th element is � a+ jtj � (rval of i)

codeL (a[e]) � = loadc (� a)
codeR e �

loadc jtj
mul

add

In general, an array can be given by an expression which
must be evaluated before indexing.

In C, an array is a pointer-constant which R-value is the
start address of the array.



Arrays, records and static memory management

codeL (e1[e2]) � = codeR e1 �

codeR e2 �

loadc jtj
mul

add

codeR e � = codeL e � e is an array

NB! In C, the following are equivalent (as L-values):

a[2] 2[a] a+ 2

Normalization: array variables and expressions which
evaluate to an array are before indexing brackets; index
expressions are inside brackets.



Arrays, records and static memory management

Record is set of �elds; each �eld may be of di�erent type.

Fields are accessed by names (selectors).

For simplicity, we assume that �eld names are unique.

{ Alternative: for each record type st have a separate
environment �st.

Let struct f int a; int b; g x; be a declaration:

{ the address of the record x is the address of its �rst cell;
{ �eld addresses are relative to the address of the record;
i.e. in the example above a 7! 0; b 7! 1.



Arrays, records and static memory management

Let t � struct f t1 c1; : : : tk ck; g, then

jtj =
Pk

i=1 jtij
� c1 = 0
� ci = � ci�1 + jti�1j i > 1

Thus, an address of the �eld x:ci is � x+ � ci

codeL (e:c) � = codeL e �

loadc (� c)
add



References and dynamic memory management

Heap:

NP

EP

SP

0

S
MAX

H

H = Heap | memory area for dynamically allocated data.
NP = New-Pointer | register containing the address of the

lowermost used cell in the heap.
EP = Extreme-Pointer | register containing the address

of the topmost cell to where SP may point during
execution of the given function.



References and dynamic memory management

Stack and heap grow towards each other and must not
overlap (stack over
ow).

Both, incrementing SP or decrementing NP, may result to
the over
ow.

Register EP helps to avoid an over
ow in the case of stack
operations.

The value of EP can be determined statically.

But when allocating memory from the heap, one must
check for the over
ow.



References and dynamic memory management

Pointers allow access to anonymous, dynamically created,
objects which life-time doesn't follow LIFO principle.

Pointer values are returned by the following operations:

{ a call to the function malloc(e) allocates a memory area
of size e and returns a beginning address of the area.

{ an application of the address operator & to a variable
returns an address of the variable (ie. its L-value).

codeR (malloc(e)) � = codeR e �

new

codeR (&e) � = codeL e �



References and dynamic memory management

NP

new

NP

n

n

if (NP - S[SP] � EP)
S[SP] = NULL;

else {
NP = NP - S[SP];

S[SP] = NP;

}

NULL is a special reference constant; equivalent to the
integer 0.

In the case of over
ow returns NULL-pointer.



References and dynamic memory management

Referenced values can be accessed by the following ways:

{ an application of the dereferencing operator � to
expression e returns the content of a memory cell which
address is a R-value of e;

{ a record �eld selection through a pointer e!c is
equivalent to the expression (�e):c.

codeL (�e) � = codeR e �

codeL (e!c) � = codeR e �

loadc (� c)
add



References and dynamic memory management

Example: let be given the following declarations:

struct t f int a[7]; struct t � b; g;
int i; j;
struct t � pt;

Then � = f a 7! 0; b 7! 7; i 7! 1; j 7! 2; pt 7! 3 g.

For the expression ((pt!b)!a)[i+ 1] the following code is
emitted:

loada 3

loadc 7

add

load

loadc 0

add

loada 1

loadc 1

add

loadc 1

mul

add



References and dynamic memory management

Memory is freed by calling the C-function free(e).

The given memory area is marked as a free and is put to
the special free list, from where malloc can reuse it if
necessary.

Problems:

{ after freeing, there might be still some accessible
references pointing to the memory area (dangling
references);

{ over the time, memory might get fragmented;

free memory fragments

{ keeping track of the free list might be relatively costly.



References and dynamic memory management

Alternative: in the case of function free do nothing.

code (free(e); ) � = codeR e �

pop

If memory is full, deallocate the unaccessible memory
automatically using garbage collection.

+ Allocation and "deallocation" is simple and very e�cient.
+ No "dangling references".
+ Several garbage collection algorithms defragment the

used memory.
� Garbage collection may take time, hence there might be

noticeable pauses during the execution of the program.



Functions

A function de�nition consists of four parts:

{ a name of the function, which is used when function is
called;

{ a speci�cation of formal parameters;
{ a return type of the function;
{ a body of the function.

In C the following holds:

codeR f � = f = starting address of f code

Hence, the address environment must also keep track of
function names!



Functions

Example:

int fac (int x) f
if (x � 0) return 1;
else return x � fac(x� 1);

g

main () f
int n;
n = fac(2) + fac(1);
printf("%d"; n);

g

The same function may have several simultaneously active
instances.

main

fac printffac

facfac

fac



Functions

Formal parameters and local variables of each instance of
the function must be kept separately.

For this we allocate in stack a special memory region called
Stack Frame).

FP (Frame Pointer) is a register which points to the last
organizational cell of the active frame, and which is used
for addressing of formal parameters and local variables.



Functions

Structure of a frame:

FP

SP

formal parameters

organizational cells

return value

local variables

PCold

FPold

EPold



Functions

After function returns, the caller must be able to continue
its execution in its own frame.

Hence, when calling a function the following must be
saved:

{ frame address FP of the caller;
{ code address from where to continue after the return (ie.
program counter PC);

{ the maximal possible stack address of the caller EP.

Simpli�cation: we assume that return values �t into a
single cell.



Functions

We need to distinguish two kinds of variables:

{ global variables which are de�ned outside of functions;
{ local (or automatic) variables (incl. formal parameters)
which are de�ned inside of functions.

The address environment � binds variable names with pairs

(tag ; a) 2 fG;Lg � N

NB! Many languages restrict the scope of a variable inside
block.

Di�erent parts of a program generally use di�erent address
environments.



Functions

0 int i;
struct list f
int info;
struct list �next ;

g �l;

2 main () f
int k;
scanf("%d";&i);
scanlist(&l);
printf("%d"; ith(l; i));

g

1 int ith (struct list �x; int i) f
if (i � 1) return x!info;
else return ith(x!next ; i�1);

g



Functions

0 int i;
struct list f
int info;
struct list �next ;

g �l;

2 main () f
int k;
scanf("%d";&i);
scanlist(&l);
printf("%d"; ith(l; i));

g

1 int ith (struct list �x; int i) f
if (i � 1) return x!info;
else return ith(x!next ; i�1);

g

0 global env.
�0 i 7! (G; 1)

l 7! (G; 2)
ith 7! (G; ith)

main 7! (G; main)



Functions

0 int i;
struct list f
int info;
struct list �next ;

g �l;

2 main () f
int k;
scanf("%d";&i);
scanlist(&l);
printf("%d"; ith(l; i));

g

1 int ith (struct list �x; int i) f
if (i � 1) return x!info;
else return ith(x!next ; i�1);

g

1 env. for function ith
�1 x 7! (L; 1)

i 7! (L; 2)
l 7! (G; 2)

ith 7! (G; ith)
main 7! (G; main)



Functions

0 int i;
struct list f
int info;
struct list �next ;

g �l;

2 main () f
int k;
scanf("%d";&i);
scanlist(&l);
printf("%d"; ith(l; i));

g

1 int ith (struct list �x; int i) f
if (i � 1) return x!info;
else return ith(x!next ; i�1);

g

2 env. for function main
�2 k 7! (L; 1)

i 7! (G; 1)
l 7! (G; 2)

ith 7! (G; ith)
main 7! (G; main)



Functions

Let f be a function which calls another g.

Function f is the caller and function g the callee.

The code emitted for a function call is divided between the
caller and the callee.

The exact division depends from who has what
information.



Functions

Actions during the function call and entering to the callee:

1 saving registers FP and EP;

2 computing actual arguments of the function;

3 determining the start address g of the callee;

4 setting a new FP;

5 saving PC and jumping to g;

6 setting a new EP;

7 allocating space for local variables.

g mark

o
call

g enter

g alloc

Actions on leaving the callee:
1 restoring registers FP, EP and SP;

2 returning to f -s code; ie. restoring PC.

)
return



Functions

codeR (g(e1; : : : ; en)) � = mark

codeR e1 �

. . .
codeR en �

codeR g �

call n

Expressions standing for actual parameters are evaluated
for their R-value

{ call-by-value parameter passing.

Function g might be an expression which R-value is callee's
starting address.



Functions

Function name is a pointer constant which R-value is the
starting address of the function code.

Dereferencing a function pointer returns the same pointer.

{ Example: in the case of the declaration int (�)()g;, the
calls g() and (�g)() are equivalent.

If arguments are structs, they are copied.

codeR f � = loadc (� f) f is a function name
codeR (�e) � = codeR e � e is a function pointer
codeR e � = codeL e � e is a struct of size k

move k



Functions

Instruction move k copies k cells to top of the stack:

move k

k

for (i=k-1; i�0; i--)
S[SP+i] = S[S[SP]+i];

SP = SP + k - 1;



Functions

Instruction mark allocates space for organizational cells and for
the return value, and saves registers FP and EP:

FP FP

EP EP

mark

e

e

e

S[SP+2] = EP;

S[SP+3] = FP;

SP = SP + 4;



Functions

Instruction call n saves the continuation address and assigns
new values to FP, SP and PC:

FP FP

PC

call n

PC
n

p
q

p

q

FP = SP - n - 1;

S[FP] = PC;

PC = S[SP];

SP--;



Functions

code (t f (args)fvars ssg) � = f : enter q
alloc k

code (ss) �f
return

where q = maxS + k

maxS = maximum depth of the local stack
k = space for local variables
�f = f -s address environment



Functions

Instruction enter q sets the register EP:

enter q

q

EP

EP = SP + q;

if (EP�NP)
Error ("Stack Overflow");

NB! If there is not enough space, the execution is interrupted.



Functions

Instruction alloc k allocates space in stack for local variables:

alloc k

k

SP = SP + k;



Functions

Instruction return restores registers PC, FP and EP, and
leaves the return value in top of the stack:

return

EP

FP

PCPC

FP

EP

v

e

p

e

p

v

PC = S[FP];

EP = S[FP-2];

if (EP�NP)
Error ("Stack Overflow");

SP = FP - 3;

FP = S[SP+2];



Functions

The access to local variables and formal parameters is relative
with respect to the register FP:

codeL x � =

(
loadc j if � x = (G; j)
loadrc j if � x = (L; j)

Instruction loadrc j calculates the sum of FP and j:

loadrc j

FPFP

f+j

ff

SP++;

S[SP] = FP + j;



Functions

Analogously to instructions loada j and storea j we
introduce instructions loadr j and storer j:

loadr j = loadrc j

load

storer j = loadrc j

store

return-statement corresponds to the assignment to a variable
with the relative address -3:

code (return e; ) � = codeR e �

storer -3

return



Functions

Example: int fac(int x) f
if (x � 0) return 1;
else return x � fac(x� 1);

g

Then �fac = fx 7! (L; 1)g and the code to be emitted is:

fac: enter 7
alloc 0

loadr 1

loadc 0

leq

jumpz A

loadc 1

storer -3

return

jump B

A: loadr 1
mark

loadr 1

loadc 1

sub

loadc fac

call 1

mul

storer -3

return

B: return



Compilation of the complete program

An initial state of the abstract machine:

SP = -1 FP = EP = 0 PC = 0 NP = MAX

Let p � vars fdef 1 : : : fdef n, where fdef i is a de�nition of
function fi and one of the functions has a name main.

The emitted code consists of following parts:

code corresponding to function de�nitions fdef i;

allocation of memory for global variables;

code of a call to the function main();

instruction halt.



Compilation of the complete program

code p ; = enter (k + 6)
alloc (k + 1)
mark

loadc main

call 0

pop

halt

f1 : code fdef 1 �

. . .
fn : code fdef n �

where ; = empty address environment
� = global address environment
k = space for global variables


	CMa
	CMa architecture
	Expressions
	Statements
	Arrays and structs
	References
	Functions
	Program


