MaMa — a simple abstract machine for functional languages
Functional Language PuF

We will consider a mini-language of ”Pure Functions” PuF.

Programs are expressions e in form:

\[
e ::= b \mid x \mid (\square_1 e) \mid (e_1 \square_2 e_2) \\
| (\text{if } e_0 \text{ then } e_1 \text{ else } e_3) \\
| (e' e_0 \ldots e_{k-1}) \\
| (\text{fn } x_0, \ldots, x_{k-1} \Rightarrow e) \\
| (\text{let } x_1 = e_1; \ldots; x_n = e_n \text{ in } e_0) \\
| (\text{letrec } x_1 = e_1; \ldots; x_n = e_n \text{ in } e_0)
\]

- For simplicity, the only primitive type is int.
- Later, we will add data structures.
Example: factorial function:

\[
\text{fac} = \text{fn } x \Rightarrow \text{if } x \leq 1 \text{ then } 1 \\
\quad \text{ else } x \cdot \text{fac}(x - 1)
\]

Functional languages use two different kinds of semantics:

CBV: call by value, arguments are evaluated before the evaluation of function body (eg. SML);

CBN: call by need, arguments are passed to the function as closures and are evaluated when their values are requested (eg. Haskell).
MaMa architecture

Code:

\[C = \text{Code-store} \ — \text{memory area for a program code; each cell contains a single AM instruction.} \]

\[PC = \text{Program Counter} \ — \text{register containing an address of the instruction to be executed next.} \]

Initially, \(PC \) contains the address 0; ie. \(C[0] \) contains the first instruction of the program.
MaMa architecture

Stack:

\[
\begin{align*}
S & \quad \text{Stack — each cell contains a primitive value or an address;} \\
SP & \quad \text{Stack-Pointer — points to top of the stack;} \\
FP & \quad \text{Frame-Pointer — points to the currently active frame.}
\end{align*}
\]
MaMa architecture

Heap:

$$H = \text{Heap} \quad \text{— memory area for dynamically allocated data.}$$
MaMa architecture

Heap may contain following objects:

- **Basic Value**
 - `tag` v
 - Box `B` with value 364

- **Closure**
 - `tag` cp gp
 - Box `C`

- **Function**
 - `tag` cp ap gp
 - Box `F`

- **Vector**
 - `tag` s v[0] v[1] ... v[n-1]
 - Box `V` with `n`
MaMa architecture

Instruction \texttt{new}(tag, \textit{args}) creates an object of the given kind and returns a pointer to it.

We will use the following three functions for code generation:

- \texttt{code}_B \ e \ — \ evaluates \ an \ expression \ \textit{e} \ of \ primitive \ type \ and \ saves \ its \ value \ into \ top \ of \ the \ stack;
- \texttt{code}_V \ e \ — \ evaluates \ an \ expression \ \textit{e}, \ saves \ it \ into \ the \ heap, \ and \ puts \ a \ pointer \ of \ it \ into \ top \ of \ the \ stack;
- \texttt{code}_C \ e \ — \ does \ not \ evaluate \ an \ expression, \ but \ creates \ a \ closure \ of \ \textit{e} \ in \ the \ heap \ and \ returns \ the \ pointer \ to \ it \ to \ top \ of \ the \ stack.
Simple expressions

Expression which are constructed only using constants, operator applications and conditional expressions are compiled analogously imperative languages:

\[\text{code}_B \ b \ \rho \ \text{sd} = \text{loadc} \ b \]
\[\text{code}_B \ (\square_1 e) \ \rho \ \text{sd} = \text{code}_B \ e \ \rho \ \text{sd} \]
\[\text{op}_1 \]
\[\text{code}_B \ (e_1 \ \square_2 e_2) \ \rho \ \text{sd} = \text{code}_B \ e_1 \ \rho \ \text{sd} \]
\[\text{code}_B \ e_2 \ \rho \ (\text{sd} + 1) \]
\[\text{op}_2 \]
Simple expressions

\[
\text{code}_B (\text{if } e_0 \text{ then } e_1 \text{ else } e_2) \rho \text{ sd} = \begin{array}{c}
\text{code}_B e_0 \rho \text{ sd} \\
\text{jumpz A} \\
\text{code}_B e_1 \rho \text{ sd} \\
\text{jump B} \\
\text{A: code}_B e_2 \rho \text{ sd} \\
\text{B: ...}
\end{array}
\]

In the case of other forms of expressions, we first compute its value in the heap and load the value by dereferencing the returned pointer:

\[
\text{code}_B e \rho \text{ sd} = \begin{array}{c}
\text{code}_V e \rho \text{ sd} \\
\text{getbasic}
\end{array}
\]
Simple expressions

if (S[SP]->tag ≠ B)
 Error("Not Basic");
else
 S[SP] = S[SP]->v;

- \(\rho \) denotes an *address environment* which is in the form:

\[
\rho : Vars \rightarrow \{L, G\} \times \mathbb{Z}
\]

- An extra parameter \(sd \) (stack difference) simulates the change of register \(SP \) by instructions which modify the stack. We’ll use it later for variable addressing.
Simple expressions

Function code\textsubscript{V} for simple expressions is analogous to code\textsubscript{B} but creates an object for the primitive value in the heap.

\[
\begin{align*}
\text{code}_V \ b \ \rho \ sd & = \ \text{loadc } b \\
\text{mkbasic} \\
\text{code}_V (\Box_1 \ e) \ \rho \ sd & = \ \text{code}_B \ e \ \rho \ sd \\
\text{op}_1 \\
\text{mkbasic} \\
\text{code}_V (e_1 \ \Box_2 \ e_2) \ \rho \ sd & = \ \text{code}_B \ e_1 \ \rho \ sd \\
\text{code}_B \ e_2 \ \rho \ (sd + 1) \\
\text{op}_2 \\
\text{mkbasic}
\end{align*}
\]
Simple expressions

\[
\text{code}_V (\text{if } e_0 \text{ then } e_1 \text{ else } e_2) \ \rho \ \text{sd} = \begin{align*}
\text{code}_B & e_0 \ \rho \ \text{sd} \\
\text{jumpz} & A \\
\text{code}_V & e_1 \ \rho \ \text{sd} \\
\text{jump} & B \\
A: & \text{code}_V e_2 \ \rho \ \text{sd} \\
B: & \ldots
\end{align*}
\]

\[
S[\text{SP}] = \text{new}(B, S);
\]
Variables

Example: consider definitions

```plaintext
let c = 5
f = fn a  ⇒  let b = a * a
         in b + c

in ...
```

Function f uses a global variable c and local variables a (formal parameter) and b (defined by the inner let-expression).

A value of the global variable is determined during the construction of the function (static scoping!) and is directly accessible during execution.
Variables

Global variables

- Values corresponding to global variables are kept in the heap as a vector (Global Vector).
- They are addressed sequentially starting from 0.
- During the construction of F-object or C-object, its global vector is built and the address to it is put into objects gp-field.
- During evaluation, the register GP (Global Pointer) points to the currently active global vector.
Variables

Local variables

Local variables are kept in a stack frame.

Let \(e \equiv e' e_0 \ldots e_{m-1} \) be an application of the function \(e' \) to arguments \(e_0, \ldots, e_{m-1} \).

NB! The arity of function \(e' \) can be different of \(m \).

- PuF functions are curried \(f : t_1 \rightarrow t_2 \rightarrow \ldots \rightarrow t_n \rightarrow t \).
- Hence \(f \) may be applied to less than \(n \) arguments (partial application).
- If \(t \) is a function type, then \(f \) may be applied to more than \(n \) arguments.
Parameters can be addressed relative to FP.

- Local variables of e' can’t be addressed relative to FP.
- If e' is n-ary function and $n < m$, then the rest of $m - n$ arguments must be relocated in the frame.
If e' evaluates to a function which is already partially applied to arguments a_0, \ldots, a_{k-1} then these arguments must be moved downwards under e_0.

FP
Variables

Alternative organization of a stack frame:

Additional parameters a_0, \ldots, a_{k-1} and local variables can be pushed to the stack after arguments.
Addressing of formal parameters relative of FP is not possible anymore.
Variables

Solution:

- Addressing both arguments and local variables relative of SP!
- However SP is changing during the execution ...
Variables

- Stack difference, sd, describes the difference of the current value of SP from its value SP_0 at the entering into the function.
- The difference can be determined statically by simulating stack modifications by instructions.
- Formal parameters x_0, x_1, x_2, \ldots are bound to non positive relative addresses 0, -1, -2, \ldots; ie. $\rho x_i = (L, -i)$.
- The absolute address of i-th formal parameter is:

 $$SP_0 - i = (SP - sd) - i$$

- Local let-variables are pushed sequentially to top of the stack.
Local variables \(y_1, y_2, \ldots \) are bound to positive relative addresses; ie. \(\rho y_i = (L, i) \).

The absolute address of \(i \)-th local variable is:

\[
SP_0 + i = (SP - sd) + i
\]
Variables

The evaluation of variables in CBN semantics:

\[
\text{code}_V \ x \ \rho \ sd \ = \ \begin{cases}
\text{pushloc} \ (sd - i) & \text{if } \rho \ x = (L, i) \\
\text{eval} &
\end{cases}
\]

\[
\text{code}_V \ x \ \rho \ sd \ = \ \begin{cases}
\text{pushglob} \ i & \text{if } \rho \ x = (G, i) \\
\text{eval} &
\end{cases}
\]

Instruction \textit{eval} checks whether the variable is already evaluated or not, and if not, forces its evaluation (will be considered later).

In case of CBV semantics there is no need for \textit{eval} instruction.
Variables

A local variable with a relative address i corresponds to the stack cell $S[a]$, where

$$a = SP - (sd - i) = (SP - sd) + i = SP_0 + i$$

pushloc n

$S[SP+1] = S[SP-n]$

$SP++;$
Global variables are in the global vector.

\[S[SP+1] = GP \rightarrow v[i]; \ SP++; \]

pushglob i
Example:

Let $e \equiv (b + c)$ with environment $\rho = \{b \mapsto (L, 1), c \mapsto (G, 0)\}$ and $sd = 1$.

In case of CBN semantics $\text{code}_V e \rho sd$ emits the code:

1. pushloc 0
2. eval
2. getbasic
2. pushglob 0
3. eval
3. getbasic
3. add
2. mkbasic
Function definitions

Compilation of a function definition generates a code which constructs a functional value in the heap:

- creates a global vector for global variables;
- creates an (initially empty) argument vector;
- creates a F-object, which contains pointers to these vectors and a pointer to the start address of the code corresponding to function body.

The code for function body is generated separately.
Function definitions

code_V (fn x_0, ..., x_{k-1} \Rightarrow e) \rho sd =

getvar z_0 \rho sd

getvar z_1 \rho (sd + 1)

...

getvar z_{g-1} \rho (sd + g - 1)

where \{z_0, ..., z_{g-1}\} = free(fn x_0, ..., x_{k-1} \Rightarrow e)

\rho' = \{x_i \mapsto (L, -i) \mid i = 0, ..., k - 1\}

\cup \{z_j \mapsto (G, j) \mid j = 0, ..., g - 1\}

getvar y \rho sd = \begin{cases} pushloc (sd - i) & \text{if } \rho y = (L, i) \\
pushglob j & \text{if } \rho y = (G, j) \end{cases}
Function definitions

\[V \quad g \]

\[h = \text{new}(V,g); \]
\[SP = SP - g + 1; \]
\[\text{for} \ (i=0; \ i\leq g; \ i++) \]
\[\quad h \mapsto v[i] = S[SP+i]; \]
\[S[SP] = h; \]
Function definitions

```
h = new(V, 0);
S[SP] = new(F, A, a, S[SP]);
```
Function definitions

Example: let $f \equiv \text{fn } b \Rightarrow a + b$ with environment $\rho = \{a \mapsto (L, 1)\}$ and $sd = 2$.

code$_V$ f ρ sd emits a code:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td><code>pushloc 1</code></td>
<td>0</td>
<td><code>pushglob 0</code></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td><code>mkvec 1</code></td>
<td>1</td>
<td><code>eval</code></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td><code>mkfunval A</code></td>
<td>1</td>
<td><code>getbasic</code></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td><code>jump B</code></td>
<td>1</td>
<td><code>pushloc 1</code></td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>A: <code>targ 1</code></td>
<td>2</td>
<td><code>eval</code></td>
<td>3</td>
</tr>
</tbody>
</table>

Instructions `targ k` and `return k` are considered later.
Function applications

For function application $e' e_0 \ldots e_{m-1}$ code is generated, which:

- creates a new frame in the stack;
- passes actual parameters; ie.

 CBV: evaluates actual parameters;

 CBN: creates closures of actual parameters;
- evaluates the function e' into F-object;
- applies the function to its arguments.
Function applications

In case of CBN semantics the following code is generated:

\[
\text{code}_V (e' e_0 \ldots e_{m-1}) \rho \text{ sd} = \quad \text{mark A}
\]
\[
\text{code}_C e_{m-1} \rho (\text{sd} + 3)
\]
\[
\text{code}_C e_{m-2} \rho (\text{sd} + 4)
\]
\[
\ldots
\]
\[
\text{code}_C e_0 \rho (\text{sd} + m + 2)
\]
\[
\text{code}_V e' \rho (\text{sd} + m + 3)
\]
\[
\text{apply A}: \ldots
\]

CBV uses code$_V$ instead of code$_C$ for arguments e_i.

Function applications

Example: let $e ≡ f\ 42$ with environment $\rho = \{f \mapsto (L, 2)\}$ and $sd = 2$.

code$\nu\ e\ \rho\ sd$ emits a code (for CBV):

2 mark A 6 pushloc 4
5 loadc 42 7 apply
6 mkbasic 3 A: ...
Function applications

Structure of a frame:

- Local stack
 - SP
 - FP
 - FPCold
 - FPold
 - GPold

- Arguments
- Organizational cells
Function applications

$S[SP+1] = GP;$
$S[SP+2] = FP;$
$S[SP+3] = A;$
$FP = SP = SP+3;$
Function applications

\[h = S[SP]; \]
\[\text{if } (h \rightarrow \text{tag} \neq F) \]
\[\text{Error("Not Function");} \]
\[\text{else } \{ \]
\[\quad \text{GP} = h \rightarrow \text{gp}; \quad \text{PC} = h \rightarrow \text{cp}; \]
\[\quad \text{for } (i = 0; \quad i < h \rightarrow \text{ap} \rightarrow n; \quad i++) \]
\[\quad \text{S}[SP+i] = h \rightarrow \text{ap} \rightarrow v[i]; \]
\[\quad \text{SP} = \text{SP} + h \rightarrow \text{ap} \rightarrow n - 1; \]
\[\} \]
Under- and oversupply of arguments

- The first instruction after apply is \texttt{targ k}.
- Checks whether there are enough arguments for the function application
 - uses the condition \texttt{SP} – \texttt{FP} \geq k.
- If there are enough arguments, starts the execution of the function body.
- Otherwise, creates a new functional value:
 - creates an argument vector;
 - creates a new F-object;
 - deallocates a frame in the stack.
Under- and oversupply of arguments

Construction of F-object:

\[
S[SP] = \text{new}(F, A, S[SP], GP);
\]
Under- and oversupply of arguments

Releasing a stack frame:

GP = S[FP-2];
S[FP-2] = S[SP];
PC = S[SP];
SP = FP-2;
FP = S[FP-1];
Under- and oversupply of arguments

targ \(k \), if there are \(m < k \) arguments
Under- and oversupply of arguments

targ k, if there are \(m < k \) arguments
Under- and oversupply of arguments

targ \(k \), if there are \(m < k \) arguments
Under- and oversupply of arguments

- The last instruction of the function body, \texttt{return k}, checks whether the number of arguments is correct.
- If it is the case, then the frame is freed.
- Otherwise, the function had to evaluate into a new function which consumes the remaining arguments.

\[
\text{return } k = \begin{cases}
\text{if (SP-FP = k+1)} & \text{Release Stack Frame; } \\
\text{else} & \text{slide } k; \\
& \text{apply;}
\end{cases}
\]
Instruction **slide k** moves top of the stack k cells downwards removing cells in between:

$$S[SP-k] = S[SP];$$
$$SP = SP - k;$$
Under- and oversupply of arguments

return \(k \), if there are \(k \) arguments
Under- and oversupply of arguments

return k, if there are $m > k$ arguments
Under- and oversupply of arguments

return k, if there are $m > k$ arguments
Local definitions

In case of a let-expression let \(y_1 = e_1; \ldots; y_n = e_n \) in \(e_0 \), the generated code:

- binds variables \(y_1, \ldots, y_n \) with corresponding values; ie.
 - **CBV:** evaluates expressions \(e_1, \ldots, e_n \) and binds variables with their values;
 - **CBN:** binds variables with closures of expressions \(e_1, \ldots, e_n \);
- evaluates an expression \(e_0 \) and returns its value.

In letrec-expression letrec \(y_1 = e_1; \ldots; y_n = e_n \) in \(e_0 \) expressions \(e_i \) may refer to variables \(y_j \) before their creation:

- variables are bound first to fictional values, which are later changed to actual ones.
Local definitions

In case of CBN semantics the following code is generated:

\[
\text{code}_V \ (\text{let } y_1 = e_1; \ldots; y_n = e_n \ \text{in } e_0) \ \rho \ \text{sd} = \\
\text{code}_C \ e_1 \ \rho \ \text{sd} \\
\text{code}_C \ e_2 \ \rho_1 \ (\text{sd} + 1) \\
\ldots \\
\text{code}_C \ e_n \ \rho_{n-1} \ (\text{sd} + n - 1) \\
\text{code}_V \ e_0 \ \rho_n \ (\text{sd} + n) \\
\text{slide } n
\]

where \(\rho_i = \rho \oplus \{ y_j \mapsto (L, \text{sd} + j) \mid j = 1, \ldots, i \} \).

CBV semantics uses \text{code}_V (and not \text{code}_C) for evaluation of \(e_i \).

\textbf{NB!} All expressions \(e_i \) have the same global environment.
Local definitions

Example: let $e \equiv \text{let } a = 19; \ b = a \ast a \text{ in } a + b \text{ with environment } \rho = \emptyset$.

code$_V$ $e \ \rho \ 0$ emits the following code under CBV:

```
0  loadc 19  3  getbasic  3  pushloc 1
1  mkbasic  3  mul  4  getbasic
1  pushloc 0  2  mkbasic  4  add
2  getbasic  2  pushloc 1  3  mkbasic
2  pushloc 1  2  getbasic  3  slide 2
```
Local definitions

CBN generates the following code:

\[
\text{code}_V \ (\text{letrec } y_1 = e_1; \ldots; y_n = e_n \ \text{in} \ e_0) \ \rho \ \text{sd} = \\
\text{alloc} \ n \\
\text{code}_C \ e_1 \ \rho' \ (\text{sd} + n) \\
\text{rewrite} \ n \\
\ldots \\
\text{code}_C \ e_n \ \rho' \ (\text{sd} + n) \\
\text{rewrite} \ 1 \\
\text{code}_V \ e_0 \ \rho' \ (\text{sd} + n) \\
\text{slide} \ n
\]

where \(\rho' = \rho \oplus \{ y_i \mapsto (L, \text{sd} + i) \mid i = 1, \ldots, n \} \).

CBV semantics uses \text{code}_V (and not \text{code}_C) for evaluation of \(e_i \).

NB! Under CBV, expressions \(e_i \) are not allowed to be primitive values.
Local definitions

Example:

\[
e \equiv \text{letrec } f = \text{fn } x, y \Rightarrow \begin{cases}
\text{if } y \leq 1 \text{ then } x \\
\text{else } f(x \ast y)(y - 1)
\end{cases}
\text{ in } f 1
\]

codex e \emptyset 0 generates the following code (under CBV):

<table>
<thead>
<tr>
<th>0</th>
<th>alloc 1</th>
<th>0</th>
<th>A: targ 2</th>
<th>4</th>
<th>loadc 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pushloc 0</td>
<td>0</td>
<td>...</td>
<td>5</td>
<td>mkbasic</td>
</tr>
<tr>
<td>2</td>
<td>mkvec 1</td>
<td>0</td>
<td>return 2</td>
<td>5</td>
<td>pushloc 4</td>
</tr>
<tr>
<td>2</td>
<td>mkfunval A</td>
<td>2</td>
<td>B: rewrite 1</td>
<td>6</td>
<td>apply</td>
</tr>
<tr>
<td>2</td>
<td>jump B</td>
<td>1</td>
<td>mark C</td>
<td>2</td>
<td>C: slide 1</td>
</tr>
</tbody>
</table>
Local definitions

for (i=1; i≤n; i++)
 S[SP+i] = new(C,-1,-1);
 SP = SP + n;
Local definitions

\[H[S[SP-n]] = H[S[SP]]; \]
\[SP = SP - 1; \]

- The pointer \(S[SP-n] \) doesn’t change!
- Only its contents is changed!
Closures

- Closure are necessary for CBN semantics.
- Before a variable is accessed, its value must be available.
- Otherwise, the closure it is bound must be evaluated.
- A closure is essentially a parameterless function.
- Hence, its evaluation is its application to 0 arguments.
- Evaluation of a closure is performed by the instruction `eval`.

```
  eval = if (S[SP]→tag = C) {
    mark PC;
    pushloc 3;
    apply0;
  }
```
Closures

\[h = S[SP]; \]
\[SP--; \]
\[GP = h \rightarrow gp; \]
\[PC = h \rightarrow cp; \]
Closures

Evaluation of a closure by \texttt{eval}:

\begin{itemize}
 \item \texttt{PC} 17
 \item \texttt{GP} 3
 \item \texttt{FP}
 \item \texttt{V}
 \item \texttt{C} 42
 \item \texttt{17}
 \item \texttt{3}
 \item \texttt{mark 17}
 \item \texttt{FP}
 \item \texttt{C} 42
\end{itemize}
Closures

Evaluation of a closure by `eval`:

```
PC 17
GP 3
```

```
FP 3
C 42
```

```
PC 17
GP 3
```

```
V
C 42
```

```
V
```
Closures

Evaluation of a closure by `eval`:

```
apply0
PC 17
GP 3
FP

V
PC 42
GP
FP

C 42
FP
```
Closures

Construction of a closure for an expression e:

- packs its free variables into a global vector;
- creates a C-object which points to the global vector and to a start address of the code which evaluates the expression.

\[
\text{code}_C \ e \ \rho \ \text{sd} \quad = \\
\quad \text{getvar } z_0 \ \rho \ \text{sd} \quad \text{mkvec } g \quad \text{A: code}_V \ e \ \rho' \ 0 \\
\quad \text{getvar } z_1 \ \rho \ (\text{sd} + 1) \quad \text{mkclos } A \quad \text{update} \\
\ldots \quad \text{jump } B \quad \text{B: } \ldots \\
\quad \text{getvar } z_{g-1} \ \rho \ (\text{sd} + g - 1)
\]

where \(\{z_0, \ldots, z_{g-1}\} = \text{free}(e) \)
\[
\rho' = \{z_i \mapsto (G, i) \mid i = 0, \ldots, g - 1\}
\]
Closures

Example: let $e \equiv a \ast a$ with environment $\rho = \{a \mapsto (L, 0)\}$ and $sd = 1$.

code$_C$ e ρ sd generates the code:

1. pushloc 1
2. mkvec 1
3. mkclos A
4. jump B
5. pushglob 0
6. eval
7. getbasic
8. pushglob 0
9. eval
10. mul
11. getbasic
12. mkbasic
13. update
14. B: ...
Closures

S[SP] = new(C,A,S[SP]);
Optimization I: Global Variables

- Functional programs construct many F- and C-objects.
- In particular, this requires creation of global vectors.
- **Top level** variables can be statically bound to absolute addresses which can be used for their access.
 - Since these absolute addresses are known at compile-time, there is no need to add them to global vectors.
- Often it is also possible to reuse global vectors.
 - Useful, for instance, for compiling let-expressions or function applications, where one may construct a single global vector containing all free variables of definitions or arguments.
Similarly to local variables, reusable global variables are saved in the stack.

```
SP++;  
S[SP] = GP;
```
Optimization I: Global Variables

- Shared global vectors may contain more free variables than those in the given expression:
 - the more there are variables, the higher is a probability that one can reuse the vector.
- Unnecessary variables may lead to memory leaks.
- Possible solution: delete the reference after its "life span".
Construction of a closure for expression e delays its evaluation until its value is really needed.

If the value is not needed at all, the closure remains unevaluated (*lazy evaluation*).

But if we know statically that the value is certainly needed (e.g. by *strictness analysis*), the construction of a closure is wasted additional work.

Hence, if expression e is in a *strict context*, then:

$$\text{code}_C \ e \ \rho \ \text{sd} \ = \ \text{code}_V \ e \ \rho \ \text{sd}$$

Construction of a closure may also be unnecessary if the expression is very simple.
Optimization II: Closures

Primitive values:

Construction of a closure for primitive values is at least as expensive as direct construction of B-object!

Hence:

\[
\text{code}_C b \, \rho \, \text{sd} = \text{code}_V b \, \rho \, \text{sd} = \text{loadc} b \\
\text{mkbasic}
\]

This replaces the code sequence:

\[
\begin{align*}
\text{mkvec} & \; 0 \\
\text{mkclos} & \; A \\
\text{jump} & \; B
\end{align*}
\]

\[
\begin{align*}
A: \; \text{loadc} b \\
\text{mkbasic} \\
\text{update}
\end{align*}
\]

\[
B: \; \ldots
\]
Optimization II: Closures

Variables:

A variable is bound either to a value or a C-object, and construction of a new closure is unnecessary. Hence:

\[
\text{code}_C \ x \ \rho \ \text{sd} \ = \ \text{getvar} \ x \ \rho \ \text{sd}
\]

This replaces the code sequence:

\[
\begin{align*}
\text{getvar} \ x \ \rho \ \text{sd} & \quad \text{mkclos} \ A \\
\text{mkvec} \ 1 & \quad \text{jump} \ B \\
A: \ \text{pushglob} \ 0 & \quad \text{update} \\
\quad \text{eval} & \quad B: \ \ldots
\end{align*}
\]

Example: let \(e \equiv \text{letrec} \ a = b; \ b = 7 \ \text{in} \ a \), then \(\text{code}_V \ e \ 0 \ 0 \) generates:

\[
\begin{align*}
0 & \ \text{alloc} \ 2 \\
2 & \ \text{pushloc} \ 0 \\
3 & \ \text{mkbasic} \\
3 & \ \text{rewrite} \ 2 \\
2 & \ \text{loadc} \ 7 \\
2 & \ \text{pushloc} \ 1 \\
3 & \ \text{eval} \\
3 & \ \text{rewrite} \ 1 \\
3 & \ \text{slide} \ 2
\end{align*}
\]
Optimization II: Closures

0 alloc 2
2 pushloc 0
3 rewrite 2

alloc 2

loadc 7
3 mkbasic
3 rewrite 1
3 eval
3 slide 2
Optimization II: Closures

0 alloc 2 2 loadc 7 2 pushloc 1
2 pushloc 0 3 mkbasic 3 eval
3 rewrite 2 3 rewrite 1 3 slide 2

pushloc 0

\[\begin{array}{c|cc}
\text{C} & -1 & -1 \\
-1 & -1 & -1 \\
\end{array} \]
Optimization II: Closures

0 alloc 2
2 pushloc 0
3 rewrite 2
2 loadc 7
3 mkbasic
3 rewrite 1
3 eval
2 pushloc 1
3 slide 2

rewrite 2
Optimization II: Closures

0 alloc 2 2 loadc 7 2 pushloc 1
2 pushloc 0 3 mkbasic 3 eval
3 rewrite 2 3 rewrite 1 3 slide 2

loadc 7

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Optimization II: Closures

0 alloc 2
2 pushloc 0
3 rewrite 2

2 loadc 7
3 mkbasic
3 rewrite 1
3 eval
3 slide 2

mkbasic
Optimization II: Closures

0 alloc 2 2 loadc 7 2 pushloc 1
2 pushloc 0 3 mkbasic 3 eval
3 rewrite 2 3 rewrite 1 3 slide 2

rewrite 1
Optimization II: Closures

0 alloc 2
2 pushloc 0
3 rewrite 2

2 loadc 7
3 mkbasic
3 rewrite 1

3 eval
3 slide 2

pushloc 1
Optimization II: Closures

0 alloc 2 2 loadc 7 2 pushloc 1
2 pushloc 0 3 mkbasic 3 eval
3 rewrite 2 3 rewrite 1 3 slide 2

Segmentation Fault!!
Optimization II: Closures

Seems that the optimization was not completely correct!

Problem:

Variable x was bound to the value of y before the later was replaced by the real value!!

Solution:

cyclic definitions: not to allow definitions of the form

\[
\text{letrec } a = b; \ldots; b = a \text{ in } \ldots
\]

acyclic definitions: reorder definitions by their dependency order.
Optimization II: Closures

Functions:

Functions are already values and can’t be evaluated further. Instead of generating a code to create a closure for F-object, we can construct the F-object directly.

Hence:

\[
\text{code}_C \left(\text{fn} \ x_0, \ldots, x_{k-1} \Rightarrow e \right) \ \rho \ sd \\
= \ \text{code}_V \left(\text{fn} \ x_0, \ldots, x_{k-1} \Rightarrow e \right) \ \rho \ sd
\]
Translation of a complete program

The initial state of the abstract machine:

\[\text{PC} = 0 \quad \text{SP} = \text{FP} = \text{GP} = -1 \]

Program (ie. expression) \(e \) can’t contain any free variables.

Generated code will evaluate the expression \(e \) and then stops the machine using the instruction \texttt{halt}:

\[
\text{code } e = \text{code}_V e \emptyset 0 \\
\text{halt}
\]
Translation of a complete program

Given compilation schemes generate "spaghetti code".

Reason: the code for function bodies and closures is placed directly after instructions mkfunval and mkclos, and then jumping over this code.

Alternative: put this code somewhere else; eg. after instruction halt:

Benefits: no need for jumps after mkfunval and mkclos.

Drawbacks: compilation schemes become more complicated.

Solution: eliminate the "spaghetti code" after the code generation by a special optimization phase.
Translation of a complete program

Example:

\[
\text{let } a = 17; \ f = \text{fn } b \Rightarrow a + b \ \text{in } f 42
\]

After elimination of the "spaghetti code" we get:

<table>
<thead>
<tr>
<th></th>
<th>First Line</th>
<th>Second Line</th>
<th>Third Line</th>
<th>Fourth Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>loadc 17</td>
<td>mkbasic</td>
<td>eval</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>mkbasic</td>
<td>pushloc 4</td>
<td>getbasic</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>pushloc 0</td>
<td>eval</td>
<td>pushloc 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>mkvec 1</td>
<td>apply</td>
<td>eval</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>mkfunval A</td>
<td>B: slide 2</td>
<td>getbasic</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>mark B</td>
<td>halt</td>
<td>add</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>loadc 42</td>
<td>A: targ 1</td>
<td>mkbasic</td>
<td>return 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pushglob 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data Structures

Extended PuF with data structures:

tuples:

\[
e ::= \ldots \mid (e_0, \ldots, e_{k-1}) \mid \#j \; e \\
| (\text{let } (x_0, \ldots, x_{k-1}) = e_1 \text{ in } e_0)
\]

lists:

\[
e ::= \ldots \mid [] \mid (e_1 : e_2) \\
| (\text{case } e_0 \text{ of } [] \to e_1; \; h : t \to e_2)
\]
Data Structures

Construction of a tuple pushes its components into the stack and constructs a vector. For selection of a component, the tuple is evaluates into a vector and the component with the corresponding index is returned.

\[
\text{code}_V (e_0, \ldots, e_{k-1}) \rho \text{ sd} = \begin{cases}
\text{code}_C e_0 \rho \text{ sd} \\
\text{code}_C e_1 \rho (\text{sd} + 1) \\
\vdots \\
\text{code}_C e_{k-1} \rho (\text{sd} + k - 1) \\
\text{mkvec} k
\end{cases}
\]

\[
\text{code}_V (\#j e) \rho \text{ sd} = \begin{cases}
\text{code}_V e \rho \text{ sd} \\
\text{get} j
\end{cases}
\]

Under CBV components are evaluated directly using \(\text{code}_V\).
if (S[SP]->tag = V)
 S[SP] = S[SP]->v[j];
else Error ("Not Vector");
Data Structures

To access all components, the tuple is evaluated into vector and pointers to all its components are pushed into the stack.

\[
\text{code}_V \ (\text{let } (y_0, \ldots, y_{k-1}) = e_1 \ \text{in } e_0) \ \rho \ \text{sd} \quad = \quad \text{code}_V \ e_1 \ \rho \ \text{sd} \\
\quad \text{getvec } k \\
\quad \text{code}_V \ e_0 \ \rho' \ \text{sd} \\
\quad \text{slide } k
\]

where \(\rho' = \rho \oplus \{ y_i \mapsto \text{sd} + i \mid i = 0, \ldots, k - 1 \} \).
if (S[SP]→tag = V)
 h = S[SP]; SP--;
 for (i=0; i≤k; i++) {
 SP++; S[SP] = h→v[i];
 }
else Error ("Not Vector");
Data Structures

List constructors are represented by new kinds of objects:

- **Empty List**: `L Nil`
- **Non-empty List**: `L Cons s[0] s[1]`

```
<table>
<thead>
<tr>
<th>tag</th>
<th>con</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Nil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tag</th>
<th>con</th>
<th>s[0]</th>
<th>s[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Cons</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Data Structures

Construction of a list evaluates its arguments (if it has them; i.e. in case of ”:"), and creates a corresponding object in the heap:

\[
\text{code}_V \ [\] \ \rho \ \text{sd} \quad = \quad \text{nil} \\
\text{code}_V \ (e_1 : e_2) \ \rho \ \text{sd} \quad = \quad \text{code}_C \ e_1 \ \rho \ \text{sd} \\
\text{code}_C \ e_2 \ \rho \ (\text{sd} + 1) \\
\text{cons}
\]

Under CBV, the head and tail are evaluated by \text{code}_V.
Data Structures

```
SP++;  
S[SP] = new(L, Nil);
```
S[SP-1] = new(L, Cons, S[SP-1], S[SP]);
SP--;
Data Structures

- Inspection of lists is performed by **pattern matching**.
- Evaluation of a case-expression

 \[
 e \equiv \text{case } e_0 \text{ of } [] \rightarrow e_1; \ h : t \rightarrow e_2:
 \]

 - evaluates an expression \(e_0 \);
 - if the value of \(e_0 \) is an empty list, evaluates the expression \(e_1 \);
 - if the value of \(e_0 \) is a non-empty list, then pushes the pointers to its head and tail into the stack (i.e. binds variables \(h \) and \(t \)), and evaluates the expression \(e_2 \).
Data Structures

\[
\text{code}_V \ (\text{case } e_0 \ of \ [] \rightarrow e_1; \ h : t \rightarrow e_2) \ \rho \ \text{sd} \ = \\
\text{code}_V \ e_0 \ \rho \ \text{sd} \\
\text{tlist} \ A \\
\text{code}_V \ e_1 \ \rho \ \text{sd} \\
\text{jump} \ B \\
A: \ \text{code}_V \ e_2 \ \rho' \ (\text{sd} + 2) \\
\text{slide} \ 2 \\
B: \ ... \\
\]

where \(\rho' = \rho \oplus \{h \mapsto (L, \text{sd} + 1), t \mapsto (L, \text{sd} + 2)\} \).

\textbf{NB!} Is the same for CBN and CBV.
if (S[SP]→tag ≠ L)
 Error ("Not List");
if (S[SP]→con = Nil)
 SP--;
else {
 S[SP+1] = S[SP]→s[1];
 S[SP] = S[SP]→s[0];
 SP++; PC = A;
}
Data Structures

Example:

\[app = \text{fn } x, y \Rightarrow \text{case } x \text{ of} \]

\[[] \rightarrow y \]

\[h : t \rightarrow h : (app \ t \ y) \]
If the tuple or list is in a closure context, there is no need to construct the closure but may construct the corresponding object directly:

\[
\text{code}_C \left(e_0, \ldots, e_{k-1} \right) \rho \ sd = \begin{cases}
\text{code}_C e_0 \rho \ sd \\
\text{code}_C e_1 \rho (sd + 1) \\
\vdots \\
\text{code}_C e_{k-1} \rho (sd + k - 1) \\
\text{mkvec} \ k \\
\text{nil} \\
\text{cons}
\end{cases}
\]
Tail Recursion

- A function application is in a tail position if its value may be the value of the whole expression
 - the application \(r \ t \ (h : y) \) is in a tail position in:

 \[
 \text{case } x \text{ of } [] \rightarrow y; \ h : t \rightarrow r \ t \ (h : y)
 \]

 - the application \(f(x - 1) \) is not in a tail position in:

 \[
 \text{if } x \leq 1 \text{ then } 1 \text{ else } x \ast f(x - 1)
 \]

- A function is tail recursive if all its recursive calls (both direct and indirect ones) are in tail positions.

- There is no need to create a new frame for the application in a tail position!
Tail Recursion

If the application $e' e_0 \ldots e_{m-1}$ is in a tail position, the generated code:

- binds formal parameters with arguments e_i and evaluates an expression e' to a F-object;
- deallocates local variables in the active frame;
- applies the function to its arguments.

NB! Evaluation of arguments and a function is done in the currently active frame.
Tail Recursion

Under CBN the following code is generated:

\[
\text{code}_V \left(e' \ e_0 \ \ldots \ e_{m-1} \right) \rho \ sd \ = \ \text{code}_C \ e_{m-1} \ \rho \ sd
\]
\[
\text{code}_C \ e_{m-2} \ \rho \ (sd + 1)
\]
\[
\ldots
\]
\[
\text{code}_C \ e_0 \ \rho \ (sd + m - 1)
\]
\[
\text{code}_V \ e' \ \rho \ (sd + m)
\]
\[
\text{move} (sd + k, \ m + 1)
\]
\[
\text{apply}
\]

where \(k\) is a number of parameters of the ”outer” function.

CBV uses \text{code}_V for evaluating arguments \(e_i\) (instead of \text{code}_C).
Tail Recursion

move (r,k)

SP = SP - k - r;
for (i=1; i<=k; i++)
 S[SP+i] = S[SP+i+r];
SP = SP + k;
Tail Recursion

Example:

\[\text{rev} = \text{fn } x, y \Rightarrow \text{ case } x \text{ of} \]
\[\quad [] \rightarrow y \]
\[\quad h : t \rightarrow \text{rev } t (h : y) \]

Under CBN the following code is generated for the body of \text{rev}:

\[
\begin{align*}
0 & \text{ targ 2} & 0 & \text{ jump B} & 4 & \text{ pushglob 0} \\
0 & \text{ pushloc 0} & & & 5 & \text{ eval} \\
1 & \text{ eval} & 2 & \text{ A: pushloc 1} & 5 & \text{ move (4,3)} \\
1 & \text{ tlist A} & 3 & \text{ pushloc 4} & & \text{ apply} \\
0 & \text{ pushloc 1} & 4 & \text{ cons} & & \\
1 & \text{ eval} & 3 & \text{ pushloc 1} & 1 & \text{ B: return 2}
\end{align*}
\]

Since old organizational cells are still present, the instruction \text{return 2} is reachable only by direct jump from the branch corresponding to the empty list.