
MaMa | a simple abstract machine

for functional languages

Functional Language PuF

We will consider a mini-language of "Pure Functions" PuF.

Programs are expressions e in form:

e ::= b j x j (�1 e) j (e1�2 e2)
j (if e0 then e1 else e3)
j (e0 e0 : : : ek�1)
j (fn x0; : : : ; xk�1) e)
j (let x1 = e1; : : : ;xn = en in e0)
j (letrec x1 = e1; : : : ;xn = en in e0)

For simplicity, the only primitive type is int.

Later, we will add data structures.

Functional Language PuF

Example: factorial function:

fac = fn x) if x � 1 then 1
else x � fac (x� 1)

Functional languages use two di�erent kinds of semantics:

CBV: call by value, arguments are evaluated before the
evaluation of function body (eg. SML);

CBN: call by need, arguments are passed to the function
as closures and are evaluated when their values are
requested (eg. Haskell).

MaMa architecture

Code:

PC

10

C

C = Code-store | memory area for a program code;
each cell contains a single AM instruction.

PC = Program Counter | register containing an address
of the instruction to be executed next.

Initially, PC contains the address 0; ie. C[0] contains the �rst
instruction of the program.

MaMa architecture

Stack:

SP

FP

10

S

S = Stack | each cell contains a primitive value
or an address;

SP = Stack-Pointer | points to top of the stack;
FP = Frame-Pointer | points to the currently active frame.

MaMa architecture

Heap:

Tag

Code Pointer

Value

Heap Pointer

H = Heap | memory area for dynamically allocated data.

MaMa architecture

Heap may contain following objects:

tag s v[0] v[1] . . . v[n-1]

tag cp ap gp

tag gpcp

tag v

Closure

Function

Vector

Basic Value

V n

F

C

B 364

MaMa architecture

Instruction new(tag ; args) creates an object of the given kind
and returns a pointer to it.

We will use the following three functions for code generation:

codeB e | evaluates an expression e of primitive type and
saves its value into top of the stack;

codeV e | evaluates an expression e, saves it into the
heap, and puts a pointer of it into top of the stack;

codeC e | does not evaluate an expression, but creates a
closure of e in the heap and returns the pointer to it to top
of the stack.

Simple expressions

Expression which are constructed only using constants,
operator applications and conditional expressions are compiled
analogously imperative languages:

codeB b � sd = loadc b

codeB (�1 e) � sd = codeB e � sd
op1

codeB (e1�2 e2) � sd = codeB e1 � sd
codeB e2 � (sd + 1)
op2

Simple expressions

codeB (if e0 then e1 else e2) � sd = codeB e0 � sd
jumpz A

codeB e1 � sd
jump B

A: codeB e2 � sd
B: . . .

In the case of other forms of expressions, we �rst compute its
value in the heap and load the value by dereferencing the
returned pointer:

codeB e � sd = codeV e � sd
getbasic

Simple expressions

getbasic

B 17

17
if (S[SP]!tag 6= B)
Error("Not Basic");

else

S[SP] = S[SP]!v;

� denotes an address environment which is in the form:

� : Vars ! fL;Gg � Z

An extra parameter sd (stack di�erence) simulates the
change of register SP by instructions which modify the
stack. We'll use it later for variable addressing.

Simple expressions

Function codeV for simple expressions is analogous to codeB
but creates an object for the primitive value in the heap.

codeV b � sd = loadc b

mkbasic

codeV (�1 e) � sd = codeB e � sd
op1
mkbasic

codeV (e1�2 e2) � sd = codeB e1 � sd
codeB e2 � (sd + 1)
op2
mkbasic

Simple expressions

mkbasic

17

B 17

S[SP] = new(B,S);

codeV (if e0 then e1 else e2) � sd = codeB e0 � sd
jumpz A

codeV e1 � sd
jump B

A: codeV e2 � sd
B: . . .

Variables

Example: consider de�nitions

let c = 5
f = fn a) let b = a � a

in b+ c

in : : :

Function f uses a global variable c and local variables a (formal
parameter) and b (de�ned by the inner let-expression).

A value of the global variable is determined during the
construction of the function (static scoping!) and is directly
accessible during execution.

Variables

Global variables

Values corresponding to global variables are kept in the
heap as a vector (Global Vector).

They are addressed sequentially starting from 0.

During the construction of F-object or C-object, its global
vector is built and the address to it is put into objects
gp-�eld.

During evaluation, the register GP (Global Pointer) points
to the currently active global vector.

Variables

Local variables

Local variables are kept in a stack frame.

Let e � e0 e0 : : : em�1 be an application of the function e0 to
arguments e0; : : : ; em�1.

NB! The arity of function e0 can be di�erent of m.

PuF functions are curried f : t1 ! t2 ! � � � ! tn ! t.

Hence f may be applied to less than n arguments (partial
application).

If t is a function type, then f may be applied to more than
n arguments.

Variables

Possible organization of a stack frame:

FP

e0

em�1

e0F

+ Parameters can be addressed relative to FP.

� Local variables of e0 can't be addressed relative to FP.

� If e0 is n-ary function and n < m, then the rest of m� n

arguments must be relocated in the frame.

Variables

� If e0 evaluates to a function which is already partially
applied to arguments a0; : : : ; ak�1 then these arguments
must be moved downwards under e0.

FP

a0

ak�1

em�1

e0

Variables

Alternative organization of a stack frame:

FP

e0F

e0

em�1

+ Additional parameters a0; : : : ; ak�1 and local variables can
be pushed to the stack after arguments.

Variables

FP

em�1

e0

a0

ak�1

� Addressing of formal parameters relative of FP is not
possible anymore.

Variables

Solution:

Addressing both arguments and local variables relative of
SP!

However SP is changing during the execution . . .

sd

FP

SP

SP0

em�1

e0

Variables

Stack di�erence, sd, describes the di�erence of the current
value of SP from its value SP0 at the entering into the
function.

The di�erence can be determined statically by simulating
stack modi�cations by instructions.

Formal parameters x0; x1; x2; : : : are bound to non positive
relative addresses 0, -1, -2, . . . ; ie. � xi = (L;�i).

The absolute address of i-th formal parameter is:

SP0 � i = (SP� sd)� i

Local let-variables are pushed sequentially to top of the
stack.

Variables

SP

SP

0

1

2

-1

xk�1

x0

sd

y1

y2

Local variables y1; y2; : : : are bound to positive relative
addresses; ie. � yi = (L; i).

The absolute address of i-th local variable is:

SP0 + i = (SP� sd) + i

Variables

The evaluation of variables in CBN semantics:

codeV x � sd = pushloc (sd� i) if � x = (L; i)
eval

codeV x � sd = pushglob i if � x = (G; i)
eval

Instruction eval checks whether the variable is already
evaluated or not, and if not, forces its evaluation (will be
considered later).

In case of CBV semantics there is no need for eval instruction.

Variables

A local variable with a relative address i corresponds to the
stack cell S[a], where

a = SP� (sd� i) = (SP� sd) + i = SP0 + i

pushloc n
n

S[SP+1] = S[SP-n];

SP++;

Variables

Global variables are in the global vector.

pushglob i

i

GPGP

V V

S[SP+1] = GP!v[i];
SP++;

Variables

Example:

Let e � (b+ c) with environment � = fb 7! (L; 1); c 7! (G; 0)g
and sd = 1.

In case of CBN semantics codeV e � sd emits the code:

1 pushloc 0

2 eval

2 getbasic

2 pushglob 0

3 eval

3 getbasic

3 add

2 mkbasic

Function de�nitions

Compilation of a function de�nition generates a code which
constructs a functional value in the heap:

creates a global vector for global variables;

creates an (initially empty) argument vector;

creates a F-object, which contains pointers to these vectors
and a pointer to the start address of the code
corresponding to function body.

The code for function body is generated separately.

Function de�nitions

codeV (fn x0; : : : ; xk�1) e) � sd =
getvar z0 � sd
getvar z1 � (sd + 1)
. . .
getvar zg�1 � (sd + g � 1)

mkvec g

mkfunval A

jump B

A: targ k
codeV e �0 0
return k

B: . . .

where fz0; : : : ; zg�1g = free(fn x0; : : : ; xk�1) e)
�0 = fxi 7! (L;�i) j i = 0; : : : ; k � 1g

[fzj 7! (G; j) j j = 0; : : : ; g � 1g

getvar y � sd =

(
pushloc (sd� i) if � y = (L; i)
pushglob j if � y = (G; j)

Function de�nitions

mkvec g

g

V g

h = new(V,g);

SP = SP - g + 1;

for (i=0; i�g; i++)
h!v[i] = S[SP+i];

S[SP] = h;

Function de�nitions

mkfunval A

V V

V 0

F A

h = new(V,0);

S[SP] = new(F,A,a,S[SP]);

Function de�nitions

Example: let f � fn b) a+ b with environment
� = fa 7! (L; 1)g and sd = 2.

codeV f � sd emits a code:

2 pushloc 1

3 mkvec 1

3 mkfunval A

3 jump B

0 A: targ 1

0 pushglob 0

1 eval

1 getbasic

1 pushloc 1

2 eval

2 getbasic

2 add

1 mkbasic

1 return 1

3 B: . . .

Instructions targ k and return k are considered later.

Function applications

For function application e0 e0 : : : em�1 code is generated,
which:

creates a new frame in the stack;

passes actual parameters; ie.

CBV: evaluates actual parameters;
CBN: creates closures of actual parameters;

evaluates the function e0 into F-object;

applies the function to its arguments.

Function applications

In case of CBN semantics the following code is generated:

codeV (e0 e0 : : : em�1) � sd = mark A

codeC em�1 � (sd + 3)
codeC em�2 � (sd + 4)
. . .
codeC e0 � (sd +m+ 2)
codeV e0 � (sd +m+ 3)
apply

A: . . .

CBV uses codeV instead of codeC for arguments ei.

Function applications

Example: let e � f 42 with environment � = ff 7! (L; 2)g and
sd = 2.

codeV e � sd emits a code (for CBV):

2 mark A

5 loadc 42

6 mkbasic

6 pushloc 4

7 apply

3 A: . . .

Function applications

Structure of a frame:

FP

SP

-1

-2

arguments

local stack

organizational cells

0PCold

FPold

GPold

Function applications

mark A

FP

GP

FP

GP

V

A

V

S[SP+1] = GP;

S[SP+2] = FP;

S[SP+3] = A;

FP = SP = SP+3;

Function applications

apply PC

GP

V n

F A
A

VV

h = S[SP];

if (h!tag 6= F)
Error("Not Function");

else {

GP = h!gp; PC = h!cp;
for (i=0; i < h!ap!n; i++)
S[SP+i] = h!ap!v[i];
SP = SP + h!ap!n - 1;

}

Under- and oversupply of arguments

The �rst instruction after apply is targ k.

Checks whether there are enough arguments for the
function application

{ uses the condition SP� FP � k.

If there are enough arguments, starts the execution of the
function body.

Otherwise, creates a new functional value:

{ creates an argument vector;
{ creates a new F-object;
{ deallocates a frame in the stack.

Under- and oversupply of arguments

Construction of F-object:

gpap

GP GP

V V

VV

F A

S[SP] = new(F,A,S[SP],GP);

Under- and oversupply of arguments

Releasing a stack frame:

FP

GP

PC

FP

A
VV

A

GP = S[FP-2];

S[FP-2] = S[SP];

PC = S[SP];

SP = FP-2;

FP = S[FP-1];

Under- and oversupply of arguments

targ k, if there are m < k arguments

FPFP

PC

GP GP

PC

V

1717

V

Make Argument Vector

V V

V m

42 42

Under- and oversupply of arguments

targ k, if there are m < k arguments

FP FP

PC

GP

PC

GP

V

17

V

17

V m

F 41

V m

Build F-object

4242

V V

Under- and oversupply of arguments

targ k, if there are m < k arguments

FP FP

PC PC

GPGP

Release Frame

17

F 41 F 41

V mV m

V V

42

V V

17

Under- and oversupply of arguments

The last instruction of the function body, return k, checks
whether the number of arguments is correct.

If it is the case, then the frame is freed.

Otherwise, the function had to evaluate into a new
function which consumes the remaining arguments.

return k = if (SP-FP = k+1)
Release Stack Frame;

else {
slide k;

apply;

}

Under- and oversupply of arguments

Instruction slide k moves top of the stack k cells downwards
removing cells in between:

slide k

k

S[SP-k] = S[SP];

SP = SP - k;

Under- and oversupply of arguments

return k, if there are k arguments

FP FP

PC

GP

PC

GP

Release Frame

17

V V

17

k

Under- and oversupply of arguments

return k, if there are m > k arguments

PC

GP

PC

GP

V n

F 42

V

V n

F 42

V

slide k

k

Under- and oversupply of arguments

return k, if there are m > k arguments

PC

GP

PC

GP

apply

V42

F 42

V

V n

Local de�nitions

In case of a let-expression let y1 = e1; : : : ; yn = en in e0, the
generated code:

binds variables y1; : : : ; yn with corresponding values; ie.

CBV: evaluates expressions e1; : : : ; en and binds
variables with their values;

CBN: binds variables with closures of expressions
e1; : : : ; en;

evaluates an expression e0 and returns its value.

In letrec-expression letrec y1 = e1; : : : ; yn = en in e0
expressions ei may refer to variables yj before their creation:

variables are bound �rst to �ctional values, which are later
changed to actual ones.

Local de�nitions

In case of CBN semantics the following code is generated:

codeV (let y1 = e1; : : : ; yn = en in e0) � sd =
codeC e1 � sd
codeC e2 �1 (sd + 1)
. . .
codeC en �n�1 (sd + n� 1)
codeV e0 �n (sd + n)
slide n

where �i = �� fyj 7! (L; sd + j) j j = 1; : : : ; ig.

CBV semantics uses codeV (and not codeC) for evaluation of ei.

NB! All expressions ei have the same global environment.

Local de�nitions

Example: let e � let a = 19; b = a � a in a+ b with
environment � = ;.

codeV e � 0 emits the following code under CBV:

0 loadc 19

1 mkbasic

1 pushloc 0

2 getbasic

2 pushloc 1

3 getbasic

3 mul

2 mkbasic

2 pushloc 1

2 getbasic

3 pushloc 1

4 getbasic

4 add

3 mkbasic

3 slide 2

Local de�nitions

CBN generates the following code:

codeV (letrec y1 = e1; : : : ; yn = en in e0) � sd =
alloc n

codeC e1 �0 (sd + n)
rewrite n

. . .
codeC en �0 (sd + n)
rewrite 1

codeV e0 �0 (sd + n)
slide n

where �0 = �� fyi 7! (L; sd + i) j i = 1; : : : ; ng.

CBV semantics uses codeV (and not codeC) for evaluation of ei.

NB! Under CBV, expressions ei are not allowed to be primitive
values.

Local de�nitions

Example:

e � letrec f = fn x; y) if y � 1 then x

else f (x � y) (y � 1)
in f 1

codeV e ; 0 generates the following code (under CBV):

0 alloc 1

1 pushloc 0

2 mkvec 1

2 mkfunval A

2 jump B

0 A: targ 2
0 . . .
0 return 2

2 B: rewrite 1
1 mark C

4 loadc 1

5 mkbasic

5 pushloc 4

6 apply

2 C: slide 1

Local de�nitions

alloc n

n

C -1 -1

C -1 -1

C -1 -1

C -1 -1

for (i=1; i�n; i++)
S[SP+i] = new(C,-1,-1);

SP = SP + n;

Local de�nitions

rewrite n
n

X

X

H[S[SP-n]] = H[S[SP]];

SP = SP - 1;

The pointer S[SP-n] doesn't change!

Only its contents is changed!

Closures

Closure are necessary for CBN semantics.

Before a variable is accessed, its value must be available.

Otherwise, the closure it is bound must be evaluated.

A closure is essentially a parameterless function.

Hence, its evaluation is its application to 0 arguments.

Evaluation of a closure is performed by the instruction
eval.

eval = if (S[SP]!tag = C) {
mark PC;

pushloc 3;

apply0;

}

Closures

apply0

GP

PC

GP

PC

VV

17

C 17 C 17

h = S[SP];

SP--;

GP = h!gp;
PC = h!cp;

Closures

Evaluation of a closure by eval:

mark 17

PC

GP

PC

GP

FP FP

17

3

17

3

C 42

V

C 42

V

3

17

Closures

Evaluation of a closure by eval:

pushloc 3

PC

GP

PC

GP

FP FP

17

3

17

3

C 42

V

C 42

V

3

17

3

17

Closures

Evaluation of a closure by eval:

apply0

PC

GP

PC

GP

FP FP

17

3

42

C 42

V

C 42

V

3

17

3

17

Closures

Construction of a closure for an expression e:

packs its free variables into a global vector;

creates a C-object which points to the global vector and to
a start address of the code which evaluates the expression.

codeC e � sd =
getvar z0 � sd
getvar z1 � (sd + 1)
. . .
getvar zg�1 � (sd + g � 1)

mkvec g

mkclos A

jump B

A: codeV e �0 0
update

B: . . .

where fz0; : : : ; zg�1g = free(e)
�0 = fzi 7! (G; i) j i = 0; : : : ; g � 1g

Closures

Example: let e � a � a with environment � = fa 7! (L; 0)g and
sd = 1.

codeC e � sd generates the code:

1 pushloc 1

2 mkvec 1

2 mkclos A

2 jump B

0 A: pushglob 0
1 eval

1 getbasic

2 pushglob 0

2 eval

2 getbasic

2 mul

1 mkbasic

1 update

2 B: . . .

Closures

mkclos A

V V

C A

S[SP] = new(C,A,S[SP]);

Closures

update

PC

GP

FP FP

42

C

19

42
19

Optimization I: Global Variables

Functional programs construct many F- and C-objects.

In particular, this requires creation of global vectors.

Top level variables can be statically bound to absolute
addresses which can be used for their access.

{ Since these absolute addresses are known at compile-time,
there is no need to add them to global vectors.

Often it is also possible to reuse global vectors.

{ Useful, for instance, for compiling let-expressions or func-
tion applications, where one may construct a single global
vector containing all free variables of de�nitions or argu-
ments.

Optimization I: Global Variables

Similarly to local variables, reusable global variables are saved
in the stack.

copyglob

GP GPV V

SP++;

S[SP] = GP;

Optimization I: Global Variables

Shared global vectors may contain more free variables than
those in the given expression:

{ the more there are variables, the higher is a probability
that one can reuse the vector.

Unnecessary variables may lead to memory leaks.

Possible solution: delete the reference after its "life span".

Optimization II: Closures

Construction of a closure for expression e delays its evalua-
tion until its value is really needed.

If the value is not needed at all, the closure remains uneval-
uated (lazy evaluation).

But if we know statically that the value is certainly needed
(eg. by strictness analysis), the construction of a closure is
wasted additional work.

Hence, if expression e is in a strict context, then:

codeC e � sd = codeV e � sd

Construction of a closure may also be unnecessary if the
expression is very simple.

Optimization II: Closures

Primitive values:

Construction of a closure for primitive values is at least as
expensive as direct construction of B-object!
Hence:

codeC b � sd = codeV b � sd = loadc b

mkbasic

This replaces the code sequence:

mkvec 0

mkclos A

jump B

A: loadc b
mkbasic

update

B: . . .

Optimization II: Closures

Variables:

A variable is bound either to a value or a C-object, and
construction of a new closure is unnecessary. Hence:

codeC x � sd = getvar x � sd

This replaces the code sequence:

getvar x � sd
mkvec 1

mkclos A

jump B

A: pushglob 0
eval

update

B: . . .

Example: let e � letrec a = b; b = 7 in a, then codeV e ; 0
generates:

0 alloc 2

2 pushloc 0

3 rewrite 2

2 loadc 7

3 mkbasic

3 rewrite 1

2 pushloc 1

3 eval

3 slide 2

Optimization II: Closures

0 alloc 2

2 pushloc 0

3 rewrite 2

2 loadc 7

3 mkbasic

3 rewrite 1

2 pushloc 1

3 eval

3 slide 2

alloc 2

C -1 -1

C -1 -1

Optimization II: Closures

0 alloc 2

2 pushloc 0

3 rewrite 2

2 loadc 7

3 mkbasic

3 rewrite 1

2 pushloc 1

3 eval

3 slide 2

pushloc 0

C -1 -1

C -1 -1C -1 -1

C -1 -1

Optimization II: Closures

0 alloc 2

2 pushloc 0

3 rewrite 2

2 loadc 7

3 mkbasic

3 rewrite 1

2 pushloc 1

3 eval

3 slide 2

rewrite 2

C -1 -1

C -1 -1C -1 -1

C -1 -1

Optimization II: Closures

0 alloc 2

2 pushloc 0

3 rewrite 2

2 loadc 7

3 mkbasic

3 rewrite 1

2 pushloc 1

3 eval

3 slide 2

loadc 7

C -1 -1

C -1 -1

C -1 -1

7

C -1 -1

Optimization II: Closures

0 alloc 2

2 pushloc 0

3 rewrite 2

2 loadc 7

3 mkbasic

3 rewrite 1

2 pushloc 1

3 eval

3 slide 2

mkbasic

C -1 -1

C -1 -1

C -1 -1

C -1 -1

7 B 7

Optimization II: Closures

0 alloc 2

2 pushloc 0

3 rewrite 2

2 loadc 7

3 mkbasic

3 rewrite 1

2 pushloc 1

3 eval

3 slide 2

rewrite 1

C -1 -1

C -1 -1

C -1 -1

B 7

B 7

Optimization II: Closures

0 alloc 2

2 pushloc 0

3 rewrite 2

2 loadc 7

3 mkbasic

3 rewrite 1

2 pushloc 1

3 eval

3 slide 2

pushloc 1

C -1 -1C -1 -1

B 7B 7

Optimization II: Closures

0 alloc 2

2 pushloc 0

3 rewrite 2

2 loadc 7

3 mkbasic

3 rewrite 1

2 pushloc 1

3 eval

3 slide 2

eval

Segmentation Fault!!

C -1 -1

B 7

Optimization II: Closures

Seems that the optimization was not completely correct!

Problem:

Variable x was bound to the value of y before the later was
replaced by the real value!!

Solution:

cyclic de�nitions: not to allow de�nitions of the form

letrec a = b; : : : ; b = a in : : :

acyclic de�nitions: reorder de�nitions by their dependency
order.

Optimization II: Closures

Functions:

Functions are already values and can't be evaluated further.
Instead of generating a code to create a closure for F-object, we
can construct the F-object directly.

Hence:

codeC (fn x0; : : : ; xk�1) e) � sd

= codeV (fn x0; : : : ; xk�1) e) � sd

Translation of a complete program

The initial state of the abstract machine:

PC = 0 SP = FP = GP = -1

Program (ie. expression) e can't contain any free variables.

Generated code will evaluate the expression e and then stops
the machine using the instruction halt:

code e = codeV e ; 0
halt

Translation of a complete program

Given compilation schemes generate "spaghetti code".

Reason: the code for function bodies and closures is placed
directly after instructions mkfunval and mkclos, and then
jumping over this code.

Alternative: put this code somewhere else; eg. after
instruction halt:

Bene�ts: no need for jumps after mkfunval and mkclos.
Drawbacks: compilation schemes become more

complicated.

Solution: eliminate the "spaghetti code" after the code
generation by a special optimization phase.

Translation of a complete program

Example: let a = 17; f = fn b) a+ b in f 42

After elimination of the "spaghetti code" we get:

0 loadc 17

1 mkbasic

1 pushloc 0

2 mkvec 1

2 mkfunval A

2 mark B

5 loadc 42

6 mkbasic

6 pushloc 4

7 eval

7 apply

3 B: slide 2
1 halt

0 A: targ 1
0 pushglob 0

1 eval

1 getbasic

1 pushloc 1

2 eval

2 getbasic

2 add

1 mkbasic

1 return 1

Data Structures

Extended PuF with data structures:

tuples:
e ::= : : : j (e0; : : : ; ek�1) j #j e

j (let (x0; : : : ; xk�1) = e1 in e0)

lists:
e ::= : : : j [] j (e1 : e2)

j (case e0 of []! e1; h : t! e2)

Data Structures

Construction of a tuple pushes its components into the stack
and constructs a vector.
For selection of a component, the tuple is evaluates into a vector
and the component with the corresponding index is returned.

codeV (e0; : : : ; ek�1) � sd = codeC e0 � sd
codeC e1 � (sd + 1)
. . .
codeC ek�1 � (sd + k � 1)
mkvec k

codeV (#j e) � sd = codeV e � sd
get j

Under CBV components are evaluated directly using codeV .

Data Structures

get j

V k

j

V k

j

if (S[SP]!tag = V)

S[SP] = S[SP]!v[j];
else Error ("Not Vector");

Data Structures

To access all components, the tuple is evaluated into vector and
pointers to all its components are pushed into the stack.

codeV (let (y0; : : : ; yk�1) = e1 in e0) � sd = codeV e1 � sd
getvec k

codeV e0 �0 sd
slide k

where �0 = �� fyi 7! sd + i j i = 0; : : : ; k � 1g.

Data Structures

getvec k

k

V k V k

if (S[SP]!tag = V)

h = S[SP]; SP--;

for (i=0; i�k; i++) {
SP++; S[SP] = h!v[i];

}
else Error ("Not Vector");

Data Structures

List constructors are represented by new kinds of objects:

tag con

tag con s[0] s[1]

Non-empty List

Empty ListL Nil

L Cons

Data Structures

Construction of a list evaluates its arguments (if it has them; ie.
in case of ":"), and creates a corresponding object in the heap:

codeV [] � sd = nil

codeV (e1 : e2) � sd = codeC e1 � sd
codeC e2 � (sd + 1)
cons

Under CBV, the head and tail are evaluated by codeV .

Data Structures

nil
L Nil

SP++;

S[SP] = new(L,Nil);

Data Structures

cons

ConsL

S[SP-1] = new(L,Cons,S[SP-1],S[SP]);

SP--;

Data Structures

Inspection of lists is performed by pattern matching.

Evaluation of a case-expression
e � case e0 of []! e1; h : t! e2:

{ evaluates an expression e0;
{ if the value of e0 is an empty list, evaluates the
expression e1;

{ if the value of e0 is a non-empty list, then pushes the
pointers to its head and tail into the stack (ie. binds
variables h and t), and evaluates the expression e2.

Data Structures

codeV (case e0 of []! e1; h : t! e2) � sd =
codeV e0 � sd
tlist A

codeV e1 � sd
jump B

A: codeV e2 �0 (sd + 2)
slide 2

B: . . .

where �0 = �� fh 7! (L; sd + 1); t 7! (L; sd + 2)g.

NB! Is the same for CBN and CBV.

Data Structures

tlist A

L NilL Nil

if (S[SP]!tag 6= L)
Error ("Not List");

if (S[SP]!con = Nil)

SP--;

Data Structures

tlist A

PC

ConsLConsL

A

else {
S[SP+1] = S[SP]!s[1];
S[SP] = S[SP]!s[0];
SP++; PC = A;

g

Data Structures

Example:
app = fn x; y) case x of

[] ! y

h : t ! h : (app t y)

0 targ 2

0 pushloc 0

1 eval

1 tlist A

0 pushloc 1

1 eval

1 jump B

2 A: pushloc 1
3 pushglob 0

4 pushloc 2

5 pushloc 6

6 mkvec 3

4 mkclos C

4 cons

0 slide 2

3 B: return 2
0 C: mark D
3 pushglob 2

4 pushglob 1

5 pushglob 0

6 eval

6 apply

1 D: update

Data Structures

If the tuple or list is in a closure context, there is no need to
construct the closure but may construct the corresponding
object directly:

codeC (e0; : : : ; ek�1) � sd = codeC e0 � sd
codeC e1 � (sd + 1)
. . .
codeC ek�1 � (sd + k � 1)
mkvec k

codeC [] � sd = nil

codeC (e1 : e2) � sd = codeC e1 � sd
codeC e2 � (sd + 1)
cons

Tail Recursion

A function application is in a tail position if its value may
be the value of the whole expression

{ the application r t (h : y) is in a tail position in:

case x of []! y; h : t! r t (h : y)

{ the application f(x� 1) is not in a tail position in:

if x � 1 then 1 else x � f(x� 1)

A function is tail recursive if all its recursive calls (both
direct and indirect ones) are in tail positions.

There is no need to create a new frame for the application
in a tail position!

Tail Recursion

If the application e0 e0 : : : em�1 is in a tail position, the
generated code:

binds formal parameters with arguments ei and evaluates
an expression e0 to a F-object;

deallocates local variables in the active frame;

applies the function to its arguments.

NB! Evaluation of arguments and a function is done in the
currently active frame.

Tail Recursion

Under CBN the following code is generated:

codeV (e0 e0 : : : em�1) � sd = codeC em�1 � sd
codeC em�2 � (sd + 1)
. . .
codeC e0 � (sd +m� 1)
codeV e0 � (sd +m)
move (sd + k; m+ 1)
apply

where k is a number of parameters of the "outer" function.

CBV uses codeV for evaluating arguments ei (instead of codeC).

Tail Recursion

move (r,k)

k

r

SP = SP - k - r;

for (i=1; i�k; i++)
S[SP+i] = S[SP+i+r];

SP = SP + k;

Tail Recursion

Example:
rev = fn x; y) case x of

[] ! y

h : t ! rev t (h : y)
Under CBN the following code is generated for the body of rev :

0 targ 2

0 pushloc 0

1 eval

1 tlist A

0 pushloc 1

1 eval

0 jump B

2 A: pushloc 1
3 pushloc 4

4 cons

3 pushloc 1

4 pushglob 0

5 eval

5 move (4,3)

apply

1 B: return 2

Since old organizational cells are still present, the instruction
return 2 is reachable only by direct jump from the branch
corresponding to the empty list.

	MaMa
	PuF and MaMa architecture
	Simple expressions
	Variables
	Function definitions
	Function applications
	Under- and oversupply of arguments
	Local definitions
	Closures
	Optimization I: Global Variables
	Optimization II: Closures
	Translation of a complete program
	Data Structures
	Tail Recursion

