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Register allocation

Overview

Variables may be stored in the main memory or in

registers.

{ Main memory is much slower than registers.

{ The number of registers is strictly limited.

The goal of register allocation is to decrease the number of

memory accesses by keeping as many as possible variables

in registers.

{ Decides which values to keep in registers and which in

memory.

{ Assigns concrete registers for values which are kept there.



Register allocation

Observations

Usually there are less registers than variables.

Simultaneously alive variables cannot be allocated to the

same register.

Variables which life times do not overlap can be allocated to

the same register.

These constraints can be represented as an interference

graph:

{ nodes are variables;

{ edges are between simultaneously alive variables.

Register allocation can be stated as a graph coloring problem

of the interference graph with k colors (Lavrov 1962, Chaitin

1981)

{ k = the number of registers.
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Construction of the interference graph

To build the interference graph we need to determine live

ranges of variables.

In case of local register allocation inside basic blocks, all

live ranges are linear.

4 Discovering live ranges and checking whether they

overlap is very easy.

8 Variables have to be read from the memory before

entering to the basic block, and to be stored to the

memory when leaving.

In case of global register allocation, live ranges form a web.

8 Discovering live ranges is more complex.

4 Allows more e�cient usage of registers.
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De�nition

A graph G is k-colorable i� its nodes can be labeled with

integers 1 : : : k so that no edge in G connects two nodes with

the same label.

Main questions

How to �nd e�ciently k-coloring of a graph?

Whether and how to �nd an optimal coloring (ie. a

coloring with the minimum number of colors)?

What to do when there are not enough colors (ie.

registers)?
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Problem

The graph coloring problem is NP-complete.

Observations

Optimal algorithm works with all graphs.

{ The "worst case graph" doesn't appear in practice.

It always �nds a minimal coloring.

{ Often, an approximate coloring is enough.
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Problem

What to do if the graph is not k-colorable?

Ie. there is not enough registers?

Happens very often.

Spilling

Choose a variable and keep its values in the memory (ie. in

the stack) instead of an register.

{ The process is called spilling.

Places where the variable is accessed, generate an extra

code for reading from and storing to the memory.
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Idea

Pick a node witch has degree < k.

{ This node is k-colorable!

Remove the node (and all its edges) from the graph.

{ All its neighbours have now degree decremented by one.

{ May result to new nodes with degree < k.

If all nodes have degree � k, then pick a node, spill it to

the memory, and continue.
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Chaitin's algorithm

1 Until there are nodes with degree < k:

{ choose such node and push it into the stack;

{ delete the node and all its edges from the graph.

2 If the graph is non-empty (and all nodes have degree � k),

then:

{ choose a node (using some heuristics) and spill it to the

memory;

{ delete the node and all its edges from the graph.

{ if this results to some nodes with degree < k, then go to

the step 1;

{ otherwise continue with the step 2.

3 Successively pop nodes o� the stack and color them in the

lowest color not used by some neighbor.
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Optimistic coloring (Briggs et al)

If all nodes have a degree � k, then instead of spilling

order the nodes and push them into stack.

{ When taking nodes back from the stack they may still be

colorable!

The following graph is 2-colorable:
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Chaitin-Briggs'i algorithm

1 Until there are nodes with degree < k:

{ choose such node and push it into the stack;

{ delete the node and all its edges from the graph.

2 If the graph is non-empty (and all nodes have degree � k),

then:

{ choose a node, push it into the stack, and delete it

(together with edges) from the graph;

{ if this results to some nodes with degree < k, then go to

the step 1;

{ otherwise continue with the step 2.

3 Pop a node from the stack and color it by the least free

color.

{ If the is no free colors, then choose an uncolored node,

spill it into the memory, and go to the step 1.
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Spilling heuristics

Choosing a node for spilling is a critical for e�ciency.

Chaitin's heuristics:

{ to minimize the value of cost
degree

, where cost is a spilling

cost and degree is a current degree of the node;

{ ie. choose for spilling a "cheapest" possible node which

decreases the degree of most other nodes.

Alternative popular metrics: cost

degree2
.

Variations:

{ spilling of interference regions;

{ partitioning of live ranges;

{ rematerialization.
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