Overview

- Variables may be stored in the main memory or in registers.
 - Main memory is much slower than registers.
 - The number of registers is strictly limited.
- The goal of register allocation is to decrease the number of memory accesses by keeping as many as possible variables in registers.
 - Decides which values to keep in registers and which in memory.
 - Assigns concrete registers for values which are kept there.

Observations

- Usually there are less registers than variables.
- Simultaneously alive variables cannot be allocated to the same register.
- Variables which life times do not overlap can be allocated to the same register.
- These constraints can be represented as an interference graph:
 - nodes are variables;
 - edges are between simultaneously alive variables.
- Register allocation can be stated as a graph coloring problem of the interference graph with k colors (Lavrov 1962, Chaitin 1981)
 - -k =the number of registers.

Construction of the interference graph

- To build the interference graph we need to determine live ranges of variables.
- In case of local register allocation inside basic blocks, all live ranges are linear.
 - ✓ Discovering live ranges and checking whether they overlap is very easy.
 - Variables have to be read from the memory before entering to the basic block, and to be stored to the memory when leaving.
- In case of global register allocation, live ranges form a web.
 - X Discovering live ranges is more complex.
 - ✓ Allows more efficient usage of registers.

Definition

A graph G is k-colorable iff its nodes can be labeled with integers $1 \dots k$ so that no edge in G connects two nodes with the same label.

Main questions

- How to find efficiently k-coloring of a graph?
- Whether and how to find an optimal coloring (ie. a coloring with the minimum number of colors)?
- What to do when there are not enough colors (ie. registers)?

Problem

The graph coloring problem is NP-complete.

Observations

- Optimal algorithm works with all graphs.
 - The "worst case graph" doesn't appear in practice.
- It always finds a minimal coloring.
 - Often, an approximate coloring is enough.

Problem

What to do if the graph is not k-colorable?

- Ie. there is not enough registers?
- Happens very often.

Spilling

- Choose a variable and keep its values in the memory (ie. in the stack) instead of an register.
 - The process is called spilling.
- Places where the variable is accessed, generate an extra code for reading from and storing to the memory.

Idea

- Pick a node witch has degree < k.
 - This node is k-colorable!
- Remove the node (and all its edges) from the graph.
 - All its neighbours have now degree decremented by one.
 - May result to new nodes with degree < k.
- If all nodes have degree $\geq k$, then pick a node, spill it to the memory, and continue.

Chaitin's algorithm

• Until there are nodes with degree < k:

- choose such node and push it into the stack;
- delete the node and all its edges from the graph.
- 2 If the graph is non-empty (and all nodes have degree $\geq k$), then:
 - choose a node (using some heuristics) and spill it to the memory;
 - delete the node and all its edges from the graph.
 - if this results to some nodes with degree < k, then go to the step 1;
 - otherwise continue with the step 2.
- Successively pop nodes off the stack and color them in the lowest color not used by some neighbor.

Optimistic coloring (Briggs et al)

- If all nodes have a degree
 k, then instead of spilling order the nodes and push them into stack.
 - When taking nodes back from the stack they may still be colorable!
- The following graph is 2-colorable:

Optimistic coloring (Briggs et al)

- If all nodes have a degree
 k, then instead of spilling order the nodes and push them into stack.
 - When taking nodes back from the stack they may still be colorable!
- The following graph is 2-colorable:

Chaitin-Briggs'i algorithm

• Until there are nodes with degree < k:

- choose such node and push it into the stack;
- delete the node and all its edges from the graph.
- 2 If the graph is non-empty (and all nodes have degree $\geq k$), then:
 - choose a node, push it into the stack, and delete it (together with edges) from the graph;
 - if this results to some nodes with degree < k, then go to the step 1;
 - otherwise continue with the step 2.
- Op a node from the stack and color it by the least free color.
 - If the is no free colors, then choose an uncolored node, spill it into the memory, and go to the step 1.

Spilling heuristics

- Choosing a node for spilling is a critical for efficiency.
- Chaitin's heuristics:
 - to minimize the value of $\frac{cost}{degree}$, where cost is a spilling cost and degree is a current degree of the node;
 - ie. choose for spilling a "cheapest" possible node which decreases the degree of most other nodes.
- Alternative popular metrics: $\frac{cost}{dearee^2}$
- Variations:
 - spilling of interference regions;
 - partitioning of live ranges;
 - rematerialization.