Syntax Analysis

Syntax Analysis

o Syntax analysis checks the correctness of a program
according to the grammar:
— gets scanner generated stream of tokes as an input;
outputs a syntax-tree corresponding to the program;
in the presence of syntactic errors, locates them:
...reports possible causes of the errors;
...tries to recover and continue the analysis (in order to
discover more errors).

@ Syntax analysis is called parsing and the corresponding
analyzer parser.

Grammars

@ Syntax is usually described by context-free grammars.
e Grammar is a quadruple G = (N, T, P, S), where

— N is a finite alphabet of non-terminal symbols;
T is a finite alphabet of terminal symbols;
NNT=0and V=NUT,
Pc{a—BlacVT, BeV*}isa finite set of
production rules;
— S € N is a start symbol.

o Grammar is context-free if production rules are in the form
A — o, where A€ N and a € V*.

Grammars

A sequence w € V* is called a sentential form.

The sentential form v € V* is directly derivable from the
sentential form u € V* (notation u = v), if there are
wry, Wa, a, B € V* such, that v = wiaws, v = w1 Pw, and
oa— B EP.

Reflexive transitive closure of the relation — is called
derivation (notation =*).

The grammar G = (N, T, P, S) generates a language
LG)={weT"|S="w}

Grammars G; and G2 are equivalent if L(G1) = L(G2).

Grammars

Chomsky hierarchy:

Productions Languages Automata
Lo a— B Semi-Thue systems | Turing machines
Ly aAp — avyp Context-dependent | Bounded TM-s
Lo A—>a Context-free Push-down automata
L3 A— w, A— wB | Regular Finite automata
(La) A w Finite FA without cycles

where A,BE€ N, a,8,7 € V* and w € T*.

Lemma: Chomsky hierarchy is strict; ie.:

(L4)CL3CL2CL1CL0

Context-free Grammars

o From now on we consider only context-free grammars.

@ Production rules of context-free grammars are usually
described using Backus-Naur Form (BNF).

e Example: let N = {Exp} and T = {+, *, (,), ¢d}, then

Exp — Exp + Exp
| Exp x Exp

| (Exp)
| id

describes the set of production rules

P = { Exp— Exp + Exp, Exp— (Exp),
Exp — Exp x Exp, Exp — id }.

Context-free Grammars

Non-terminal A is productive if there exists w € T* such
that A —=* w.

Non-terminal A is reachable if there exist sentential forms
u,v € V* such that § —* uAwv.

CF-grammar G = (N, T, P, S) is reduced if every
non-terminal is productive and reachable.

Lemma: Every CF-grammar can be transformed into an
equivalent reduced CF-grammar.

Context-free Grammars

@ A sentential form may have several derivations.
o Canonical derivations:
— left-derivation — on every derivation step the leftmost
non-terminal is replaced;
— right-derivation — on every derivation step the rightmost
non-terminal is replaced.

o Example:
Exp =—m Exp + Exp Exp =—m Exp+ Exp
—m td + Exp —m Exp + Exp x Exp
—m td + Exp x Exp —mm Exp + Exp % ud
—m td + 1d x Exp —m Exp 4+ id % ud

—m td + id x id = 1d + td % id

Context-free Grammars

e Every derivation determines a unique syntax-tree (or
parse-tree) — a tree with ordered nodes, where:
— the root is labelled by the start symbol S;
intermediate nodes are labelled by non-terminals;
leaves are labelled by terminals or the empty symbol ¢;
when intermediate node is labelled by the non-terminal
A and roots of its subtrees (from left to right) ¢4,...,¢,
are labelled by Ai,...,A,,then A — A;... A, € P.

@ Labels of leaves (read from left to right) form the derived
sentential form.

@ Syntax-tree uniquely determines which production rules
were used, but not the order of their application.

Context-free Grammars

Example: previously given left- and right-derivations
correspond to the same syntax-tree

(o)
©

&—E ©
O

Context-free Grammars

NB! A sentence may have several syntax-trees!

Exp —m
——im
—im
—im
—im

Exp * Exp @

Exp + Exp * Exp
id + Exp * Exp

d + 1d x E

wrnid) O &
COBNORNC
O O

Context-free Grammars

CF-grammar is ambiguous if for the same sentence there
are several syntax-trees.

For every syntax-tree, there is exactly one left- and

right-derivation; thus:

— non-ambiguous sentence has exactly one left- and one
right-derivation;

— ambiguous sentence has at least two left- and
right-derivations..

Different syntax-trees of a sentence usually correspond to
different semantic interpretations of the sentence.

An ambiguous grammar can sometimes (but not always)
be transformed to an equivalent non-ambiguous one.

Context-free Grammars

o Elimination of ambiguity — binary operators:

— every priority level introduces a new non-terminal,

— left-associative operators use left-recursion;
right-associative operators right-recursion;

— rules corresponding to operators of higher priorities are
placed "deeper”.

o Example:
Exp — BExp + Term

| Term

Term — Factor x Term
| Factor

Factor — (Exp)
| id

Example:

Exp

—im
—im
—im
—Im
—Im
—im
—im
—im

Context-free Grammars

Exp 4+ Term

Term 4+ Term
Factor + Term

1d + Term

1d + Factor * Term
1d + 1d * Term

1d + 1d x Factor

1d + 1d * id

Example:

Exp

—im
—im
—im
—Im
—Im
—im
—im

Context-free Grammars

Term @
Factor x Term
1d *x Term

1d * Factor * Term @

1d x 1d * Term

1d x 1d x Factor @ @ @

id * id * 1id @ @ @
() Q)

(@

Example:

Exp

—im
—im
—im
—Im
—Im
—im
—im
—im
—im

Context-free Grammars

Exp + Term @

Exp + Term + Term

Term + Term + Term @ @

Factor + Term + Term
1d + Term + Term
1d + Factor + Term
id + id + Term @ @
1d + 1d + Factor
Q) ()
O,

1d + id + 1d

Context-free Grammars

o Elimination of ambiguity — condition statements:

Stmt — ¢f Cnd then Stmt
| if Cnd then Stmt else Stmt
| Other

@ The following sentence has two different syntax-trees:

1f Cnd; then if Cndy then Stmt; else Stmts

a; @

OICDICICICICONNC)

Context-free Grammars

Usually, the first one is considered to be the correct one; ie. else
belongs to the innermost conditional sentence:

Stmt — WithElse
| NoElse

WithElse — if Cnd then WithElse else WithElse
| Other

NoElse — 1f Cnd then Stmt
|

1f Cnd then WithElse else NoElse

Context-free Grammars

L
e
OICITICY
=
6@@

Parsing Techniques

Top-down parsing:
o starts constructing the syntax-tree from the root downward
towards leaves;

@ on every step selects a production rule and tries to match
it with the input string;

o if the rule doesn’t match the process backtracks;
o results to the leftmost derivation.
Bottom-up parsing:

o starts constructing the syntax-tree from leaves working up
toward the root;

@ applies suitable rules from right to left until reaches the
start symbol;

o results to the rightmost derivation.

Top-down Parsing

General algorithm of top-down parsing:

o construct a root node, label it with the start symbol, and
continue construction of the tree towards leaves from left
to right;

o if the node under consideration is a non-terminal A, then
choose a rule in the form of A — «, construct nodes
corresponding to its RHS, and continue with its leftmost
subnode.

o if the node is a terminal which doesn’t match with the
input symbol, then backtrack to the choice of the
production rule which introduced this terminal, and
continue from there by choosing another production rule;

o if the node is terminal matching to the input symbol, then
continue with the leftmost unexpanded node.

Top-down Parsing

Example:

E - E+T

E-T

T
T —- TxF

T/F
(E)

1d
num

||\ﬁ||

&

Top-down Parsing
e 1d — num % i1d

Example:
E - E+T

Top-down Parsing
Example:

E - E+T e 1d — num x id
E—T E1l e id — num % id

T ®

T T+F
T/F
F

F (E)

1d

num

=
——l——1—=1

-

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E1
E3

Top-down Parsing

e 1d — num % 1d
e id — num * 1d
e id — num * 1d

&

®

=] =

——l——1—=1

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E1
E3
T.3

Top-down Parsing

id — num * 1id
1d — num * 1d
1d — num * 1d
1d — num * 1id

&

®

=] =

——l——1—=1

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E1
E3
T.3
F.2

Top-down Parsing

1d —
1d —
1d —
1d —
1d —

num
num
num
num
num

¥R X X ¥

&0

id
1d
1d
id
id

=] =

——l——1—=1

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E1
E3
T.3
F.2

Top-down Parsing

1d —
1d —
1d —
1d —
1d —

num
num
num
num
num

*
*
*
*
*

id
1d
1d
id
id

ide — num * id

®

=] =

——l——1—=1

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E1
E3
T.3
F.2

Top-down Parsing

e 1d — num
e id — num
e id — num
e 1d — num
e 1d — num

¥R X X ¥

id
1d
1d
id
id

id o(> num * id

<>
O,

&

Top-down Parsing
e 1d — num % i1d

Example:
E - E+T

Top-down Parsing
Example:

E - E+T e 1d — num x id
E—T E2 e id — num % id

T ©

T T+F
T/F
F

F (E)

1d

num

=
——l——1—=1

-

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E.2
E3

Top-down Parsing

e 1d — num % 1d
e id — num * 1d
e id — num * 1d

&

O

=] =

——l——1—=1

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E.2
E3
T.3

Top-down Parsing

id — num * 1id
1d — num * 1d
1d — num * 1d
1d — num * 1id

&

O

=] =

——l——1—=1

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E.2
E3
T.3
F.2

Top-down Parsing

1d —
1d —
1d —
1d —
1d —

num
num
num
num
num

¥R X X ¥

&0

id
1d
1d
id
id

=] =

——l——1—=1

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E.2
E3
T.3
F.2

Top-down Parsing

1d —
1d —
1d —
1d —
1d —

num
num
num
num
num

*
*
*
*
*

id
1d
1d
id
id

ide — num * id

O

=] =

——l——1—=1

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E.2
E3
T.3
F.2

Top-down Parsing

1d —
1d —
1d —
1d —
1d —

num
num
num
num
num

*
*
*
*
*

id
1d
1d
id
id

ide — num * id

1d — e num x 1d

©

=] =

——l——1—=1

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E.2
E3
T.3
F.2

T1

Top-down Parsing

e 1d — num
e id — num
e id — num
e 1d — num
e 1d — num

*
*
*
*
*

id
1d
1d
id
id

ide — num * id

1d — e num x 1d

1d — e num x id

=] =

——l——1—=1

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E.2
E3
T.3
F.2

T1
T.3

Top-down Parsing

e 1d — num % 1d
e id — num * 1d
e id — num * 1d
e 1d — num x 1

e 1d — num % 1d

ide — num * id
1d — e num x 1d
1d — e num x id
id — e num * 1d

& O ¢
C?@

&

=] =

——l——1—=1

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E.2
E3
T.3
F.2

T1
T.3
F.3

Top-down Parsing

1d —
1d —
1d —

num
num
num

1d — num

e 1d — num

ide —
d —e
1d —e
id —e
id —e

num
num
num
num

* X X X ¥

num

id
1d
1d
1

id

¥R X X ¥

1d
1d
1d
1d

& O ¢
C?@

=] =

——l——1—=1

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E.2
E3
T.3
F.2

T1
T.3
F.3

Top-down Parsing

e 1d — num
e id — num
e id — num
e 1d — num
e 1d — num

id e — num
1d — e num
1d — e num
id —e num
id —e num

L L

1d — num e

id
1d
1d
1

id

¥R X X ¥

1d
1d
1d
1d
1d

& O ¢
C?@

=] =

——l——1—=1

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E.2
E3
T.3
F.2

T1
T.3
F.3

Top-down Parsing

e 1d — num
e id — num
e id — num
e 1d — num
e 1d — num

id e — num
1d — e num
1d — e num
id —e num
id —e num
1d — num e

*
*
*
*
*
*

1d — num x e

x 1d
* 1d
* 1d
x 1
x 1d
1d
1d
1d
1d
1d
1d
1d

& O ¢
@@

=] =

——l——1—=1

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E.2
E3
T.3
F.2

T1
T.3
F.3

F.2

Top-down Parsing

e 1d — num
e id — num
e id — num
e 1d — num
e 1d — num

id e — num
1d — e num
1d — e num
id —e num
id —e num
1d — num e

*
*
*
*
*
*

1d — num x e

1d — num *x e

x 1d
* 1d
x 1d
x 1d
x 1d
1d
1d
1d
1d
1d
1d
1d
1d

=] =

——l——1—=1

e

Example:

E+T
E-T

TxF
T/F

(E)
id

num

E.2
E3
T.3
F.2

T1
T.3
F.3

F.2

Top-down Parsing

e 1d — num %

e 1d — num x*

e id — num * 1d
e 1d — num x

e 1d — num *

id e — num *
1d — e num x
1d — e num x
id — e num *
1d — e num *
1d — num e x
1d — num x e 1id
1d — num * e 1d
id — num % id e

Top-down Parsing
o Efficiency of parsing strongly depends from the choice of a
production rule.
@ Choosing a wrong rule causes a later backtracking.

@ In the case of the grammar has left-recursive rules, the
top-down parsing may be non-terminating.

Top-down Parsing
o Efficiency of parsing strongly depends from the choice of a
production rule.
@ Choosing a wrong rule causes a later backtracking.

@ In the case of the grammar has left-recursive rules, the
top-down parsing may be non-terminating. @

e id — num * 1d

Top-down Parsing
o Efficiency of parsing strongly depends from the choice of a
production rule.
@ Choosing a wrong rule causes a later backtracking.

@ In the case of the grammar has left-recursive rules, the
top-down parsing may be non-terminating. °

o 1d — num * id e ‘ G

E2 e 1d— num x 1d

Top-down Parsing
o Efficiency of parsing strongly depends from the choice of a
production rule.
@ Choosing a wrong rule causes a later backtracking.

@ In the case of the grammar has left-recursive rules, the
top-down parsing may be non-terminating. °

e id — num * 1d
E2 e 1d— num x 1d
E2 e id — num x id

Top-down Parsing
o Efficiency of parsing strongly depends from the choice of a
production rule.
@ Choosing a wrong rule causes a later backtracking.

@ In the case of the grammar has left-recursive rules, the
top-down parsing may be non-terminating. °

e 1d — num % 1d
E2 e 1d— num % 1d
E2 e 1d— num % 1d
E2 e 1d — num x 1id

Top-down Parsing
o Efficiency of parsing strongly depends from the choice of a
production rule.
@ Choosing a wrong rule causes a later backtracking.

@ In the case of the grammar has left-recursive rules, the
top-down parsing may be non-terminating. °

e 1d — num % 1d
E2 e 1d— num % 1d
E2 e 1d— num % 1d
E2 e 1d — num x 1id

Left-recursion

@ A grammar is left-recursive, if there is a non-terminal
A € N such that
A =7 Aaq,
where a € V*.

o Left-recursion is direct, if there is a rule in the form
A— Aa.

o Otherwise, the left-recursion is indirect.

Left-recursion Elimination

Elimination of the direct left-recursion:

o Introduce a new non-terminal and replace the left-recursion
with the right-recursion

A — BA
A = Aalp A — ad e
o In general

A — Aal ’ AOlg ’ ‘ ,61 ’ ,52 ‘

A —),31A1|/32AI|...
A = oA ag A ... €

Left-recursion Elimination

Example:

E - E+T T — TxF
| E-T | T/F
| T | F

E - TE T —- FT

E - +TFE ™ — xFT
| —-TE | JFT
| |

€ £

o The new grammar generates the same language, but is less
intuitive.

o In both grammars the operators are left associative.

Left-recursion Elimination

Elimination of the indirect left-recursion:
o Example:
A1 — Ag o | ﬂ
Ag — Al Y | Az é
@ Transform the indirect left-recursion to the direct one.

@ In the right-hand sides of A, production rules, replace all
occurrences of A; with its definition:

A]_ — A2(1|ﬂ
Ay, — Aza’)’|/3’)/|A25

o Eliminate the immediate left-recursion:

A1 — A2a|,3
Ay = By A
Ay, = ay Ay |8 Are

Left-recursion Elimination

General algorithm for left-recursion elimination:

Assign some order to non-terminals Aq,..., A,

for:«< 1ton
for j«1toz1—1

Replace productions in the form A; — A; a
with productions 4, — 61 a | B2 a | ... | B o,
where A; — B1 | 2| ... | Br are all A; productions

Eliminate the immediate left-recursion from productions of
the non-terminal A;

NB! Assumes that the original grammar doesn’t have neither
e-productions nor cycles (ie. 4; =T A;).

Left-recursion Elimination
Example:
A = CalAa
B — AB|«vy
C — By

Example:

A -
B -
c -

Left-recursion Elimination

Cal|lAa

ABly
Biély

= Qo

U

Cad
AB|v
Béle
aAle

Example:

QW >
14

= QW

VBRI

Left-recursion Elimination

Cal|lAa

ABly
Biély

CaA
CaA By
Bély
alle

= Qo

U

Cad
AB|v
Béle
aAle

Left-recursion Elimination

Example:
!
A - CalAa A = Cad
B — AB|y
B — AB|«vy
c — B ¢ = Bile
¢ A = ade
A — Cad A — Cad
B — CaAB|y B — CalABly
C — By C — CaAPBs|yé|e
A 5 aAe A 5 adle

Example:

QW >
14

VBRI

= QW

Qs Qo
L1l 1l

Left-recursion Elimination

Cal|lAa

ABly
Biély

CaA
CaA By
Bély
alle

CalA
CaA Bly
a A BSC
aAle
76C |9 C'e

U

= Qo

= QW

Lild

Cad
AB|v
Béle
aAle

Cad

CadA Bly
CaA Bé|lvd]e
aAle

Example:

QW >
14

VBRI

= QW

Qs Qo
L1l 1l

Cal|lAa

ABly
Biély

CaA
CaA By
Bély
alle

CalA
CaA Bly
a A BsC
aAle

76C |9 C'e

U

= Qo

= QW

!

Qx=QqQnx

Lild

VBN

Left-recursion Elimination

Cad
AB|v
Béle
aAle

Cad

CadA Bly
CaA Bé|lvd]e
aAle

CadA

a A BsC
aAle
7Y6C |9 C'e

Predictive Parsing

@ Choosing a wrong rule causes a later backtracking.

@ The "rightness” of the rule can often be decided by
lookahead of some number of input symbols.

@ In general case, one needs unbounded lookahead.
— Ex.: parsing algorithms by Cocke-Younger-Kasam or

BEarley.

o Predictive parsing is a top-down parsing where it is always

possible to choose a correct rule without backtracking.

— A grammar must be such, that the next input symbol
(or some fixed number of symbols) determines uniquely
the correct rule.

Predictive Parsing

o For every sentential form a € (N UT)* define a set:

first(a) = {a€T|a="ap}
U{e|a="¢}

where § € (N UT)*.
o For every non-terminal A € N define a set:

follow(A) = {a€T|S=*aAap}
U{$|S="*aA}

where o, 8 € (N UT)* and § is a special end of input
marker.

Example:

Predictive Parsing

S —= ABC
A — aAle

{c,d}

{b,e}

{a,e}
first(ABC)
(first(A) \ {e})

U (first(B) \ {e})
U first(C)
{a,b,c,d}

B
C
follow(C)

follow(B)

follow(A)

—
—

ble
cld

{8}

first(C)

{e,d}

(first(B) \ {€})
U first(C)

{b, c,d}

Predictive Parsing

o If production rules A — o and A — 8 are such that
first(e) N first(B) = 0, then lookahead of one input symbol
is enough to decide which rule to choose.

e NB! Holds only when ¢ ¢ {first(a) U first(B)}.
e Otherwise, the set follow(A) should also be inspected.
o For each rule A — o define a set:

frat'(a) = { et DL llon(), e S Bt

e A CF-grammar is LL(1), if for all (pairwise different)
production rules A — c and A — B

firstt(a) N first™(B) = 0

Predictive Parsing

e NB! LL(1) grammar cannot be neither left-recursive nor
ambiguous!

o Example:
S—Sal|p

o Iff+#e
— Then first(B) C first(S) = first(S a)
— Thus first™(Sa) N first™(B) # 0
e lfg=c¢
— Then a € first(Sa) and a € follow(S) = {a, $}
— Thus first™(Sa) N first™(B) # 0

Predictive Parsing

e Often, a grammar can be transformed to LL(1) using:

— left-recursion elimination;
— left-factoring;
— in worst case, one can generalize the grammar a bit (and
check for removed restrictions after parsing).
o Left-factoring replaces rules with a common prefix with
new ones, where the prefix is only in one RHS.

o Example:

A - BaCD aCZ

A
| BaCE Z

oW

_)
%
|

Predictive Parsing

Left-factoring algorithm:

© For every non-terminal A € N find a longest prefix o which
appears in two or more right-hand sides of A production
rules.

© If a # ¢, then replace all productions of A

A — afi|aBa|...|aBnl|y
with productions

A - aZ|y
Z = PilBf2]...|Pn

where Z € N is a new non-terminal.

© Repeat the process until none of right-hand sides have
common prefix.

Predictive Parsing

o Recursive descent parsing is a top-down parsing method
where:

— parser consists of a set of (mutually recursive)
procedures, one for each non-terminal, recognizing
sentential forms derivable from the corresponding
non-terminal;

— depending from the input, each procedure chooses a
production rule and calls one after another procedures
corresponding to non-terminals in the right-hand side of
the production rule.

@ Recursive descent parsing is commonly used for
hand-written parsers.

Predictive Parsing

Example: let non-terminal A have production rules
A—aB|bCA|DE

parseA() {
if token = a then {
token := nextWord(); parseB();
} else if token = b then {
token := nextWord(); parseC(); parseA();
} else {
parseD(); parseE();

}
}

Predictive Parsing

o Automatically generated LL(1) parsers are usually table
driven:
— construct a table M where rows and columns are
indexed by non-terminals and terminals respectively;
— cells of the table contain production rules to be chosen
for the given non-terminal and input symbol.

@ Structure of a table driven LL(1) parser:

LL(1) Parser ——> OuTpPUT

I

Parsing Table

Predictive Parsing
LL(1) parsing algorithm:

push($); push(S);
token := nextWord();
while stack # empty do {
A= pop();
if A€ N then {
if M[A, token] = By ...B, then {
push(By);...; push(By);
} else error();
} else if A = token then {
token := nextWord();
} else error();

}

Shift-reduce Parsing

Shift-reduce parsing is a general method for a bottom-up
syntax analysis:

o constructing a tree starts from leaves working up toward
the root with a goal of "reducing” the input string to the
start symbol.

o during parsing there is a forest of trees, which correspond
to the different, already recognized, substrings;

o two basic actions:

— shift reads a new input symbol and pushes it to the
stack;

— reduce applies production rules in reverse to the top of
the stack; ie. it replaces a sequence of symbols in the top
of the stack, forming a right-hand side of a rule, with the
left-hand symbol of that rule;

o construction corresponds to the right derivation.

Example:

QS

Shift-reduce Parsing

Input String: eabccde

ABe
cA | c

Shift-reduce Parsing

Example:
Input String: a ebccde

S — aABe
A — bcA | c
B — d

shift

Shift-reduce Parsing

Example:
Input String: ab eccde

S — aABe
A — bcA | c
B — d

shift
shift

ONO,

Shift-reduce Parsing

Example:
Input String: abc ecde

S — aABe
A — bcA | c
B — d

shift
shift
shift

ONONO.

Shift-reduce Parsing

Example:
Input String: abcc ede

S — aABe
A — bcA | c
B — d

shift
shift
shift

shift @ @ @ @

Shift-reduce Parsing

Example:
Input String: abcc ede

S — aABe
A — bcA | c
B — d

shift
shift
shift

ifel(iifltceA—)c @ @ @ @

Shift-reduce Parsing

Example:
Input String: abcc ede

S — aABe
A — bcA | c

B — d
Ca)

shift

shift °

shift

ifel(iifltceA—)c @ e @ @

reduce A — bcA

Shift-reduce Parsing

Example:
Input String: abccd ee

S — aABe
A — bcA | c

B — d
Ca)

shift

shift °

shift

ifel(iifltceA—)c @ e @ @ @

reduce A — bcA
shift

Shift-reduce Parsing

Example:
Input String: abccd ee

S — aABe
A — bcA | c

B — d
Ca)

shift

shift °

shift

ifel(iifltceA—)c @ e @ @ @

reduce A — bcA
shift
reduce B — d

Shift-reduce Parsing

Example:
Input String: abccdee
S — aABe
A — bcA | c
C e >
shift

shift

I ONONORORONC,

reduce A — bcA
shift

reduce B — d
shift

shift °

Shift-reduce Parsing

Example:
Input String: abccdee

S — aABe
A — bcA | c °
()

B — d

shift

shift ° e

shift

I ONONORONONC,

reduce A — bcA
shift

reduce B — d
shift

reduce S - aABe

Shift-reduce Parsing

Example:
Input String:

S — aABe
A — bcA | c °
()

B — d

shift

shift ° e

shift

I ONONORONONC,

reduce A — bcA

shift S —.m» aABe —,n aAde
reduce B — d —m abcAde —,, abccde
shift

reduce S - aABe

Shift-reduce Parsing

Sentential form is called right-sentential form, if it occurs in
the rightmost derivation of some sentence.

A handle of a right-sentential form <y is a production rule
A — B and a position of v where the string 8 may be found
and replaced by A to produce the previous right-sentential
form in a rightmost derivation of 7.

Equivalently, a handle is a substring 8, such that it matches
RHS of some production and S =7}, 6 Aw =, §fw =7,
where B,7,6 € V* and w € T*.

The process of discovering a handle and reducing it to the
appropriate LHS is called "handle pruning”.

NB! In the case of an unambiguous grammar, rightmost
derivations, and hence handles, are unique.

Shift-reduce Parsing

Example: given the grammar

S — aABe
A — bcA|c
B — d

and the rightmost derivation

S—maABe—=,,aAde = ,,abcAde

The handle of the right-sentential form abcAde is bcA.

Shift-reduce Parsing

o In a stack based implementation of shift-reduce parser, the
handle will always eventually appear on top of the stack.

o A viable prefix of a right-sentential form v is any prefix of
v ending no farther right than the right end of the handle
of 7.

@ Viable prefixes are possible stacks of the shift-reduce parser!

o NB! The "language of viable prefixes” is regular!

o Hence, there is a finite automaton accepting viable prefixes.

@ This automaton is an essential ingredient of all LR parsing
techniques.

LR Parsing

Structure of LR parser:

LR(1) Parser

—> OuTPUT

L

’ ACTION Table||GOTO Table

LR Parsing
Skeleton of LR(1) parser:

push(Invalid); push(sg); found := false;
token := nextWord();
while found # true do {
s == top();
if ACTION |s,token] = reduce(A —) then
pop(2 x| B]);
s:=top(); push(A); push(GOTO[s, Al);
else if ACTION s, token] = shift(s;) then
push(token); push(s;);
token := nextWord();
else if ACTION (s, token] = accept & token = § then
found := true;
else report error;

}

report success;

LR Parsing

e LR(0)-item (or simply item) is a production rule with a dot
in the RHS.

@ An item [A — o - f] is valid for a viable prefix ¢ if there
is a rightmost derivation S =}, dAw =, dafw and
da = .

o Item in the form [A — - o] is an initial item and in the form
[A — o] is a complete item.

LR Parsing

o Example: given a grammar

S — aAc
A = Ab |
Its LR(0)-items are:
[S—-aAc] [A— - Ab
[S—a-Ac [A— A
[S—aA- (] [A—)Ab]
[S—aAc [A— -]

e NB! For each CF-grammar the set of LR(0)-items is finite.

LR Parsing

o A valid item [A — - fv] means that the input seen so far
is consistent with the use of A — By immediately after the
symbol on top of the stack.

e A valid item [A — B -] means that the input seen so far
is consistent with the use of A — B at this point of the
parse, and that the parser has already recognized S.

o A complete valid item [A — fv -] means that the parser has
seen B, and that this is consistent with reducing to A.

LR Parsing

o If [A — «] is a complete valid item for a viable prefix 7,
then A — a might have been used to derive yw from d Aw.
o However, in general, it might be also that this was not a
case.
- [A — o] may be valid because of a different rightmost
derivation S =%, 0 Aw' =, yW'.
— There could be several complete valid items for +.
— There could be a handle of yw that includes some symbols
of w.
o A context-free grammar for which knowing a complete valid
item is enough to determine the previous right-sentential
form is called LR(0).

LR Parsing

o A nondeterministic LR(0)-automaton is a NFA, where states
are items and there are two kinds of transitions:
— for every pair of items [A - a- Xf] and [A - aX - f], a

transition labelled by a (terminal or nonterminal) symbol
X.

[A— a-Xp) X [A — aX - B]

— for every pair of items [A — a- Xf] and [X — 7], a
transition labelled by the empty symbol e.

(A - XB] i [X — 9]

@ The grammar is augmented with a new start symbol S’ and
a single rule S’ — S.

o A state containing the item [S’ — - S] is the starting state
of the automaton.

LR Parsing

[S" — 5]

—([$' > - 9]

)
S — (S)S |e¢

SI

LR Parsing

DFA can be constructed from NFA by subset construction.
DFA has sets of items as its states.

Items in sets are called kernel items if they originate as
targets of non-e-transitions.

Items added to the state during the e-closure step are called
closure items.

Kernel items uniquely determine the state.

LR Parsing

5—(S) -8
S— (58S
S —-

S — (5)S-

LR Parsing
LR(0) parsing algorithm:

while true do {
state := top();
if 3[A — o - Xp] € state AX €T then
Y := getToken();
if 3[A — a-Yf] € state then
shift(Y); push([A — aY - B]);
else error;
else if 3[A — 7] € state then
if A=S5"A+v =S then accept;
else pop(2 * |7v]);
state := top();
if 3[B — a - Af] € state then
push(A); push([B — aA - fB]);

else error;

LR Parsing

e A grammar is LR(0) grammar iff any complete item
[A — o] € state is the only item of the state.

— Shift-reduce conflict: if 3B — a - B] € state;
- Reduce-reduce conflict: if 3[B — B:] € state.

o Reduce states: states containing a complete item.
o Shift states: all other states.

LR Parsing

SLR(1) = Simple LR(1) parsing.

Uses the DFA of sets of LR(0) items.

Uses the next lookahead token in the input string to direct

its actions.

Similar to LR(0) parsing, except that decision on which

token to use is delayed until the last possible moment.

— Consults the input token before a shift to make sure that
an appropriate DFA transition exists.

— Uses the Follow set of a nonterminal to decide if a
reduction should be performed.

Effective extension to LR(0) parsing that is powerful enough

to handle many practical languages.

LR Parsing
SLR(1) parsing algorithm:

while true do {
state := top(); X := getToken();
if 3[A — o - Xf] € state then
shift(X); push([A — aX - B]);
else if J[A — 7] € state A X € follow(A) then
if A=S"Avy=SAX =$ then accept;
else pop(2 * [1));
state := top();
if 3[B — a - Af] € state then
push(A); push([B — aA - f);
else error;
else error;

}

LR Parsing

e A grammar is SLR(1) iff it does not have the following two
conflicts: for all states

— Shift-reduce conflict:

VIA— a-Xf]€state NX €T
= —(3[B — 7] A X € follow(B))

— Reduce-reduce conflict:

V[A — a:] A[B = B] = follow(A) N follow(B) =0

LR Parsing

o LR(k)-item is a pair [A — a -, w], where A — aff is a
production rule and w € T™ is a word of length |w| < k.
@ [A — -f7, w] means that the input seen so far is consistent

with the use of A — fv immediately after the symbol on
top of the stack.

o [A— B-v, w] means that the input seen so far is
consistent with the use of A — B~ at this point of the
parse, and that the parser has already recognized S.

e [A — B7v-, w] means that the parser has seen B, and that
lookahead symbol of w is consistent with reducing to A.

Shift-reduce Parsing

o Example: given a grammar

S — aAc
A — Ab | e

Its LR(k)-items for lookahead string w are:

[S—-adc w [A— - Ab, w]
[S—a-Ac, uw] [A— A-b, w]
[S—ad c v [A—)Ab w]
[S—adAc-, w] [A w|

o NB! For each CF-grammar the set of LR(k)-items is finite.

LR Parsing

Finding a closure of LR(1)-items

@ Closure(S) adds all the items implied by items already in
the set of items S.
- An item [A — B - BY, a] implies [B — -7, z] for each
production B — 7 and symbol z € first(da).
o Algorithm:

Closure(S) {
while (S is still changing) do {
V[A— B-BS, al€S
VB—T€P
Vb € first(da)
if [B— -7, b] € S then
S:=SU{[B— T, b}
}
¥

@ The algorithm terminates, as the set of items is finite.

LR Parsing

e Goto(s, X) computes the state that the parser would reach
if it recognized X € V while in state s:

Goto(s, X) = Closure({[A — X4, a] | [A — B-X4, a] € s})

o Building the Canonical Collection:
so := Closure({[S" — -S, $]});
S:={so}; A:=0; k:=1;
while (S is still changing) do {

VSj €S, zeV
s, := Goto(s;, z);
A:=AU{(sj,z) — sk}
if s ¢ S then
S§:=8SU{sx}; k:=k+1,

LR Parsing

Example:

Rl ex [V

L1411

Symbol | first

B S {n}
T_5|T E | {n}
n - | {}
| {x

n_|{n}

Start state:

So

Closure({[S — -E, $]})
{ [S— B3, [E~-T-F, 3| B

T, $],

[T_)F*T, $]’ [T—)F*T, _], [TﬁFa $]v

[T—) 'F, —], [F_> n, $]:[F_> n,

=], [F = n, %]

LR Parsing

1st iteration:

51 = Goto(sg, E)
= { [S—E, ¥ }
Sa = Goto(so,T)
= { [E—-T--E, 8§, [E—-T- $ }
s3 = Goto(sg, F')
= { [T—=F-«T, 8§, [T = F-«T, -],
[T—F, 9§, [T—F, -] }
S4 Goto(sg,n)

{ [F_>n’ $]) [F—)n’ _]’ [F_>n: *] }

2nd iteration:

S5

S6

3rd iteration:

S7

S8

LR Parsing

Goto(sz, —)

[E—-T-E 8§, [E—-T-E,89,[E— T8,
[T — -FxT, —, [T—> -Fy,],

T—-FxT, $§], [T = -F, §,

[F'— n, %], [F— n, =], [F— n, §
Goto(sg,*)

[T — FxT, 8, [T— FxT, -],

[T —-FxT, 8§, [T - -FxT, -],

[T — -F, 8], [T — F, —],

[F_> n, $]’ [F_> ‘n, _]a [F_> n, *]

Goto(ss, E)

{ [E—-T-E, § }
Goto(ss, T

{ [T—=FxT-, 8], [T—FxT-, -] }

LR Parsing

Transition relation A

State | B | T | F' | —

o
[y
\o}
w

O O O I W DN
~
N
w

LR Parsing
Generation of LR(1)-tables:

Vs, €S
Vi € s,
if it=[A— a-ap, b],A(sz,a) = sg, a € T then
ACTION [z, a] := shift(k);
else if 1 =[S’ — S-, §] then
ACTION]|z, a] := accept;
else if : = [A — (-, a] then
ACTION|z,a] :=reduce(4A — B);
VAeN
if A(sz, A) = s then
GOTO[z, A] :=k;

LR Parsing

LR(1)-tables for the example grammar:

ACTION GOTO

n — * $ E| T
0 | shift(4) 1| 2
1 accept
2 shift(5) reduce(3)
3 reduce(5) | shift(6) | reduce(5)
4 reduce(6) | reduce(6) | reduce(6)
5 | shift(4) 7| 2
6 | shift(4) 8
7 reduce(2)
8 reduce(4) reduce(4)

	Syntax analysis
	Top-down Parsing
	Shift-reduce Parsing

