
WiM | a simple abstract machine

for logical languages

The language Proll

We consider a small logic programming language Proll
("Prolog-light").

Compared with Prolog, we do not treat:

arithmetic operations;

the cut operator;

self-modi�cation of programs using assert and retract.

The language Proll

A program p has the following syntax:

t ::= a j X j j f(t1; : : : ; tn)
g ::= p(t1; : : : ; tk) j X = t
c ::= p(X1; : : : ; Xk) g1; : : : ; gr
p ::= c1 : : : cm ?g

A term t is either an atom (ie. constant), a variable, an
anonymous variable, or a constructor application.

A goal g is either literal, ie. a predicate call, or a
uni�cation.

A clause c has a head p(X1; : : : ; Xk) and a body (ie. a
sequence of goals).

A program consists of sequence of clauses together with a
query (ie. a single top-level goal).

The language Proll

Example:

bigger(X;Y) X = elephant ; Y = horse

bigger(X;Y) X = horse ; Y = donkey

bigger(X;Y) X = donkey ; Y = dog

bigger(X;Y) X = donkey ; Y = monkey

is bigger(X;Y) bigger(X;Y)
is bigger(X;Y) bigger(X;Z); is bigger(Z; Y)
?is bigger(elephant ; dog)

The language Proll

Example:

app(X;Y; Z) X = []; Y = Z
app(X;Y; Z) X = [H j X 0]; Z = [H j Z 0]; app(X 0; Y; Z 0)
?app(X; [Y; c]; [a; b; Z])

[] the atom denoting an empty list;

[H j Z] a binary list constructor application;

[a; b; Z] is a shorthand of [a j [b j [Z j []]]].

WiM architecture

Code:

PC

10

C

C = Code-store | memory area for a program code;
each cell contains a single AM instruction.

PC = Program Counter | register containing an address
of the instruction to be executed next.

Initially, PC contains the address 0; ie. C[0] contains the �rst
instruction of the program.

WiM architecture

Stack:

SP

FP

10

S

S = Stack | each cell contains a primitive value
or an address;

SP = Stack-Pointer | points to top of the stack;
FP = Frame-Pointer | points to the currently active frame.

WiM architecture

Heap:

HP

10

H

H = Heap | memory area for dynamically allocated data;
HP = Heap-Pointer | points to the �rst free cell.

The instruction new creates a new object in the heap.

Objects are tagged with their types (like in MaMa).

WiM architecture

Heap may contain following objects:

Atom

Variable

Unbound Variable

Structure

1 cell

1 cell

1 cell

n+1 cells

A a

R

R

S f/n

Construction of Terms

Before parameters are passed to goals, the corresponding terms
are constructed in the heap.

The address environment � binds each clause variable X with
its address in the stack (relative of FP).

Construction of terms is performed by function codeA t �,
which:

creates a tree representation of the term t in the heap ;

returns a pointer to it on top of the stack.

Construction of Terms

Example: Representation of the
term t � f(g(X;Y); a; Z), where X
is an initialized variable, and Y and
Z are not yet initialized.

S f/3

R

A a

S g/2

R

R X

Construction of Terms

codeA a � = putatom a

codeA X � = putvar (� X)
codeA �X � = putref (� X)
codeA � = putanon

codeA f(t1; : : : ; tn) � =
codeA t1 �
. . .
codeA tn �
putstruct f/n

where X is an uninitialized and �X is an initialized variable.

Example: let t � f(g(�X;Y); a; Z) and
� = fX 7! 1; Y 7! 2; Z 7! 3g, then

codeA t � emits the code:

putref 1 putatom a

putvar 2 putvar 3

putstruct g/2 putstruct f/3

Construction of Terms

putatom a

aA

SP++;

S[SP] = new (A,a);

Construction of Terms

i

putvar i

FP FP

R

SP++;

S[SP] = new (R,HP);

S[FP+i] = S[SP];

Construction of Terms

putanon

R

SP++;

S[SP] = new (R,HP);

Construction of Terms

i

putref i

FPFP

SP++;

S[SP] = deref (S[FP+i]);

The auxiliary function deref contracts chains of references:

ref deref (ref v) {
if (H[v] = (R,w) && v 6= w) return deref(w);
else return v;

}

Construction of Terms

putstruct f/n

n

S

f/n

v = new (S,f,n);

SP = SP - n + 1;

for (i=1; i�n; i++)

H[v+i] = SP[SP+i-1];

S[SP] = v;

Construction of Terms

Remarks:

The instruction putref i not only copies a reference from
S[FP+i], but also dereferences it as much as possible.

During term construction references always point to
smaller heap addresses. Even though, this is also case in
many other situations, it is not guaranteed in general.

Translation of Goals

Goals correspond to procedure calls.

Their translation is performed by the function codeG.

First create a stack frame.

Then construct the actual parameters in the heap

. . . and store references to these into the stack frame.

Finally, jump to the code of the predicate.

Translation of Goals

codeG p(t1; : : : ; tk) � = mark A

codeA t1 �
. . .
codeA tk �
call p/k

A: . . .

Example: let g � p(a;X; g(�X;Y)) and � = fX 7! 1; Y 7! 2g,

then codeG g � emits the code:

mark A

putatom a

putvar 1

putref 1

putvar 2

putstruct g/2

call p/3

A: . . .

Translation of Goals

Structure of a frame:

FP

SP

-1

-2

arguments

local stack

0

-5

-4

-3
organizational cells

FPold

PosCont

Translation of Goals

Remarks:

The positive continuation address PosCont records where
to continue after successful treatment of the goal.

Additional organizational cells are necessary for
backtracking.

Translation of Goals

mark A

6

FP FP

A

SP = SP + 6;

S[SP] = A;

S[SP-1] = FP;

Translation of Goals

call p/nn

p/n

FP

PC

FP = SP - n;

PC = p/n;

Uni�cation

We denote occurrences of a variable X by ~X.

It will be translated di�erently depending whether it's
initialized or not.

We introduce the macro put ~X �:

put X � = putvar (�X)
put �X � = putref (�X)
put � = putanon

Uni�cation

Translation of the uni�cation ~X = t:

push a reference to X onto the stack;

construct the term t in the heap;

introduce a new instruction which implements the
uni�cation.

codeG (~X = t) � = put ~X �
codeA t �
unify

Uni�cation

Example: consider the equation

�U = f(g(�X;Y); a; Z)

Then, given an address environment

� = fX 7! 1; Y 7! 2; Z 7! 3; U 7! 4g

the following code is generated:

putref 4

putref 1

putvar 2

putstruct g/2

putatom a

putvar 3

putstruct f/3

unify

Uni�cation

Instruction unify applies the run-time function unify() to the
topmost two references:

unify

unify (S[SP-1], S[SP-2]);

SP = SP - 2;

Uni�cation

Function unify()

. . . takes two heap addresses. For each call we guarantee
that these are maximally dereferenced.

. . . checks whether the two addresses are already identical.
In that case does nothing and the uni�cation succeeded.

. . . binds younger variables (larger addresses) to older

variables (smaller addresses).

. . . when binding a variable to a term, checks whether the
variable occurs inside the term (occur-check).

. . . records newly created bindings.

. . . may fail, in which case initiates backtracking.

Uni�cation

bool unify (ref u, ref v) {
if (u == v) return true;

if (H[u] == (R,)) {
if (H[v] == (R,)) {
if (u > v) {
H[u] = (R,v); trail(u); return true;

} else {
H[v] = (R,u); trail(v); return true;

}
} else if (check (u,v)) {
H[u] = (R,v); trail(u); return true;

} else { backtrack(); return false; }
}
...

Uni�cation

...

if (H[v] == (R,)) {
if (check (v,u)) {
H[v] = (R,u); trail(v); return true;

} else { backtrack(); return false; }
}
if (H[u] == (A,a) && H[v] == (A,a)) return true;

if (H[u] == (S,f/n) && H[v] == (S,f/n)) {
for (int i=1; i<=n; i++)

if (!unify (deref(H[u+i]), deref(H[v+i])))

return false;

return true;

}
backtrack(); return false;

}

Uni�cation

S f/2

S f/2

R

R

R R

A a

Uni�cation

S f/2

R

R

R R

A a

S f/2

Uni�cation

S f/2

S f/2

R

R

R R

A a

Uni�cation

S f/2

S f/2

R

R

R R

A a

Uni�cation

S f/2

S f/2

R

R

R R

A a

Uni�cation

The function trail() records new bindings.

The function backtrack() initiates backtracking.

The function check() performs the occur-check; ie. tests
whether a variable (its �rst argument) occurs inside a term
(its second argument).

Often, this check is skipped:

bool check (ref u, ref v) {
return true;

}

Uni�cation

Otherwise, we could implement check() as follows:

bool check (ref u, ref v) {
if (u == v) return false;

if (H[v] == (S,f/n))

for (int i=1; i<=n; i++)

if (!check (u, deref (H[v+i])))

return false;

return true;

}

Uni�cation

The translation of an equation ~X = t is very simple,

but all the objects constructed to represent t which have
corresponding matching object reachable from X becomes
immediately garbage.

Idea:

{ Push a reference to the run-time binding of ~X onto the
stack.

{ Avoid construction of subterms of t as long as possible.
{ Instead, translate each node of t into an instruction
which performs the uni�cation with this node!

codeG (~X = t) � = put ~X �
codeU t �

Uni�cation

Uni�cation of atoms and variables:

codeU a � = uatom a

codeU X � = uvar (�X)
codeU �X � = uref (�X)
codeU � = pop

Uni�cation

Instruction uatom a implements the uni�cation with an atom:

uatom a

R aAR

v = S[SP]; SP--;

switch (H[v]) {
case (A,a): break;

case (R,): H[v] = (R, new(A,a));

trail(v); break;

default: backtrack();

}

Uni�cation

Instruction uvar i implements the uni�cation with an
uninitialized variable:

i

uvar i

i

FPFP

S[FP+i] = S[SP];

SP--;

Uni�cation

Instruction pop implements the uni�cation with an anonymous
variable:

pop

SP--;

Uni�cation

Instruction uref i implements the uni�cation with an
initialized variable:

i

uref i

i

FPFP

Y

X

�

� = mgu(X;Y)

unify (S[SP], deref(S[FP+i]));

SP--;

The only place, where the run-time function unify() is called!

Uni�cation

Uni�cation of constructor applications:

The uni�cation code performs a pre-order traversal over t.

First it checks whether the root node is uni�able.

If both terms have the same topmost constructor, then
recursively checks for subterms.

In the case of an uninitialized variable switches from
checking to building.

Uni�cation

Uni�cation of constructor applications:

codeU (f(t1; : : : ; tn)) � =
ustruct f/n A

son 1

codeU t1 �
. . .
son n

codeU tn �

up B

A: check ivars(f(t1; : : : ; tn)) �
codeA (f(t1; : : : ; tn)) �
bind

B: . . .

Uni�cation

A

ustruct f/n A

ustruct f/n A
PC

R R

S f/n S f/n

switch (H[S[SP]]) {
case (S,f/n): break;

case (R,): PC = A; break;

default: backtrack();

}

Uni�cation

Instruction son i pushes the reference of the i-th subterm onto
the stack:

son i

i i

S

f/n

S

f/n

S[SP+1] = deref (H[S[SP]]+i);

SP++;

Uni�cation

Instruction up A pops a reference from the stack and jumps to
the continuation address:

APC
up A

SP--;

PC = A;

Uni�cation

In the case of an uninitialized variable we need to switch
from checking to building.

Before constructing the new term we need to exclude that
it contains the variable on top of the stack:

{ the function ivars(t) returns the set of initialized
variables of t;

{ the macro check fY1; : : : ; Ydg � generates the necessary
tests:

check fY1; : : : ; Ydg � = check (� Y1)
. . .
check (� Yd)

Uni�cation

Instruction check i tests whether the (uninitialized) variable
on top of the stack occurs inside the term bound to the i-th
variable:

i

check i

i

FPFP

R R

if (!check (S[SP], deref(S[FP+i])))

backtrack();

Uni�cation

Instruction bind binds the (uninitialized) variable to the
constructed term:

bind

R R

H[S[SP-1]] = (R, S[SP]);

trail (S[SP-1]);

SP = SP - 2;

Uni�cation

Example: Let t � f(g(�X;Y); a; Z) with environment
� = fX 7! 1; Y 7! 2; Z 7! 3g. Then codeU t � generates the
code:

ustruct f/3 A1
son 1

ustruct g/2 A2
son 1

uref 1

son 2

uvar 2

up B2
A2: check 1

putref 1

putvar 2

putstruct g/2

bind

B2: son 2
uatom a

son 3

uvar 3

up B1

A1: check 1
putref 1

putvar 2

putstruct g/2

putatom a

putvar 3

putstruct f/3

bind

B1: . . .

Clauses

The code for clauses will:

allocate stack space for locals;

evaluate the body;

free the stack frame (if possible).

We denote local variables by fX1; : : : ; Xmg, where the �rst k
ones are formal parameters.

codeC (p(X1; : : : ; Xk) g1; : : : ; gn) = pushenv m

codeG g1 �
. . .
codeG gn �
popenv

Clauses

Instruction pushenv m allocates stack space for local variables:

pushenv m

m

FPFP

SP = FP + m;

Clauses

Example: Let

r � a(X;Y) f(�X;X1); a(�X1; �Y)

Then codeC r generates the code:

pushenv 3

mark A

putref 1

putvar 3

call f/2

A: mark B
putref 3

putref 2

call a/2

B: popenv

Predicates

A predicate q/k is de�ned by a sequence of clauses
rr � r1 : : : rf .

The translation of predicates is performed by the function
codeP .

If a predicate has just a single clause (ie. f = 1), we have:

codeP r = codeC r

If a predicate has several clauses, then:

{ we �rst "try" the �rst clause;
{ if it fails, then "try" the second one; etc.

Predicates

If uni�cation fails, we call the run-time function
backtrack().

The goal is to roll back the whole computation to the
backtrack point; ie. to the (dynamically) latest goal where
there is another clause to "try".

In order to restore previously valid bindings, we have used
the run-time function trail() which stores new bindings
in a special memory area.

Predicates

Trail:

TP

10

T

T = Trail | memory area for storing new bindings;
TP = Tail-Pointer | points to the topmost used cell.

Predicates

There is also a special register BP which points to the current
backtrack point.

SP

FP

BP

10

S

Predicates

A backtrack point is a stack frame to which program execution
possibly returns:

FP

-1

-2

0

-5

-4

-3

FPold

PosCont

HPold

TPold

BPold

NegCont

We will use following macros to denote organizational cells:

PosCont � S[FP]

FPold � S[FP�1]
HPold � S[FP�2]

TPold � S[FP�3]
BPold � S[FP�4]
NegCont � S[FP�5]

Predicates

The run-time function backtrack() restores registers according
to the frame corresponding to backtrack point:

void backtrack() {
FP = BP;

HP = HPold;

reset (TPold,TP);

TP = TPold;

PC = NegCont;

}

The function reset() restores variable bindings; ie. undoes all
bindings created after the backtrack point.

Predicates

backtrack()

PC

BP

TP

HP

FP

PC

BP

TP

HP

FP

13

17

42

13

17

42

13

17

42

Predicates

The variables which are created since the last backtrack
point can be removed together with their bindings simply
by restoring the old value of the register HP.

This works �ne if younger variables always point to older

objects.

Bindings where older variables point to younger objects
must be reset "manually".

These bindings are recorded in the trail.

Predicates

The function trail() records a binding if the argument points
to a younger object:

void trail (ref u) {
if (u < S[BP-2]) {
TP = TP+1;

T[TP] = u;
}

}

The cell S[BP-2] contains the value of HP before the creation
of backtrack point.

The function reset() removes all bindings created after the
last backtrack point:

void reset (ref x, ref y) {
for (ref u=y; x<u; u--)

H[T[u]] = (R,T[u]);
}

Predicates

Translation of a predicate q/k, which is de�ned by clauses
r1; : : : ; rf (f > 1), generates a code which:

creates a backtrack point;

successively "tries" the alternatives;

deletes the backtrack point.

Predicates

codeP (r1; : : : ; rf) = q/k: setbtp
try A1
. . .
try Af�1

delbtp

jump Af
A1: codeC r1

. . .
Af : codeC rf

NB!
The backtrack point is deleted before the last alternative is
"tried".

For the "last try", the code jumps directly to the
alternative and never returns to the present frame.

Predicates

Example:
s(X) t(�X)
s(X) �X = a

Translation of the predicate s=1 results:

s/1: setbtp
try A

delbtp

jump B

A: pushenv 1
mark C

putref 1

call t/1

C: popenv

B: pushenv 1
putref 1

uatom a

popenv

Predicates

Instruction setbtp saves registers HP, TP, BP:

setbtp

FP FP

BP

TP

HP

BP

TP

HP42

17

42

17

17

42

HPold = HP;

TPold = TP;

BPold = BP;

BP = FP;

Predicates

Instruction try A saves the current PC as the negative
continuation address and jumps to the alternative to be "tried"
at address A:

try A

PC

BP

TP

HP

PC

BP

TP

HP

FPFP

2929 A

NegCont = PC;

PC = A;

Predicates

Instruction delbtp restores the value of BP:

delbtp

FP FP

BP

TP

HP

BP

TP

HP

BP = BPold;

Predicates

Instruction popenv restores registers FP and PC, and if possible
pops the stack frame:

6

PC

BP

FP

popenv

PC

BP

FP 42

42
if (FP > BP) SP = FP - 6;

PC = PosCont;

FP = FPold;

Predicates

If FP � BP the frame is not deallocated:

6 6

PC

BP

FP

popenv

PC

BP

FP 42

42

42

if (FP > BP) SP = FP - 6;

PC = PosCont;

FP = FPold;

Queries and Programs

Translation of a program p � rr1 : : : rrh?g generates:

{ code for evaluating the query g;
{ code for the predicate de�nitions rri.

Query evaluation is preceded by:

{ initialization of registers;
{ allocation of space for globals.

Query evaluation is succeeded by:

{ returning the values of globals.

Queries and Programs

code (rr1 : : : rrh ?g) = init

pushenv d

codeG g �
halt d

codeP rr1
. . .
codeP rrh

where free(g) = fX1; : : : ; Xdg and � = fXi 7! i j i = 1 : : : dg.

Instruction halt d . . .
. . . terminates the program execution;

. . . returns the values of d globals;

. . . if user requests, performs backtracking.

Queries and Programs

Instruction init creates the initial backtrack point:

init

BP

TP

HP

FP

BP

TP

HP

FP-1

0

-1

-1

f

-1

-1

0

0

-1

BP = FP = SP = 5;

S[0] = f;

S[1] = S[2] = -1;

S[3] = 0;

BP = FP;

If the query g fails, the code at address f will be executed (eg.
prints a message telling about the failure).

Queries and Programs

Example:

t(X) �X = b q(X) s(�X) s(X) �X = a
p q(X); t(�X) s(X) t(�X) ? p

init

pushenv 0

mark A

call p/0

A: halt 0
t/1: pushenv 1

putref 1

uatom b

popenv

p/0: pushenv 1
mark B

putvar 1

call q/1

B: mark C
putref 1

call t/1

C: popenv

q/1: pushenv 1
mark D

putref 1

call s/1

D: popenv
s/1: setbtp

try E

delbtp

jump F

E: pushenv 1
mark G

putref 1

call t/1

G: popenv
F: pushenv 1
putref 1

uatom a

popenv

Last Call Optimization

Consider the predicate app/3 de�ned as follows:

app(X;Y; Z) X = []; Y = Z
app(X;Y; Z) X = [H j X 0]; Z = [H j Z 0]; app(X 0; Y; Z 0)

The last goal of the second clause is a recursive call:

we can evaluate it in the current stack frame;

after (successful) completion, we will not return to the
current frame but go directly back to the "predecessor"
frame.

Last Call Optimization

Consider a clause r � p(X1; : : : ; Xk) g1; : : : ; gn, which has m
local variables and where gn � q(t1; : : : ; th).

codeC r = pushenv m

codeG g1 �
. . .
codeG gn�1 �
mark B

codeA t1 �
. . .
codeA th �
call q/h

B: popenv

Last Call Optimization

Consider a clause r � p(X1; : : : ; Xk) g1; : : : ; gn, which has m
local variables and where gn � q(t1; : : : ; th).

codeC r = pushenv m

codeG g1 �
. . .
codeG gn�1 �
lastmark

codeA t1 �
. . .
codeA th �
lastcall (q/h,m)

Last Call Optimization

If the current clause is not last or goals g1; : : : ; gn�1 have
created backtrack points, then FP � BP.

Then the instruction lastmark creates a new frame but
stores a reference to the predecessor frame.

Otherwise (ie. if FP > BP), it does nothing.

Last Call Optimization

6

lastmark

FP

BP BP

FPA

A

A

if (FP � BP) {
SP = SP + 6;

S[SP] = PosCont;

S[SP-1] = FPold;

}

Last Call Optimization

If FP � BP, then the instruction lastcall (q/h,m)
behaves like call q/h.

Otherwise, the current stack frame is reused:

{ the cells S[FP+1], . . . , S[FP+h] get new values;
{ and then directly jumps to the predicate q/h.

lastcall (q/h,m) = if (FP � BP) call q/h;
else {

move (m,h);

jump q/h;

}

Last Call Optimization

lastcall(q/h,m)

h

m

PC

BP

FP

BP

FP

q/h

Last Call Optimization

Consider the clause

a(X;Y) f(�X;X1); a(�X1; �Y)

The last call optimization yields:

pushenv 3

mark A

putref 1

putvar 3

call f/2

A: lastmark

putref 3

putref 2

lastcall(a/2,3)

NB! If the clause is last and its last goal is the only one, then
we can omit lastmark and replace lastcall(q/h,m) with
instructions move(m,h) and jump q/h.

Last Call Optimization

The last call optimization for the second clause of app/3 yields:

A: pushenv 6
putref 1

ustruct [|]/2 B

son 1

uvar 4

son 2

uvar 5

up C

B: putvar 4
putvar 5

putstruct [|]/2

bind

C: putref 3
ustruct [|]/2 D

son 1

uref 4

son 2

uvar 6

up E

D: check 4
putref 4

putvar 6

putstruct [|]/2

bind

E: putref 5
putref 2

putref 6

move(6,3)

jump app/3

Stack Frame Trimming

Order local variables according to their life time.

If possible, remove dead variables.

Example:

a(X;Z) p1(�X;X1); p2(�X1; X2); p3(�X2; X3); p4(�X3; Z)

{ after the goal p2(�X1; X2) the variable X1 is dead;
{ after the goal p3(�X2; X3) the variable X2 is dead.

Stack Frame Trimming

After every non-last goal which has dead variables insert an
instruction trim:

trim m m

FP FP

if (FP � BP)

SP = FP + m;

NB! We can remove dead locals only if there are no new
backtrack points created.

Stack Frame Trimming

Example:

a(X;Z) p1(�X;X1); p2(�X1; X2); p3(�X2; X3); p4(�X3; Z)

Ordering of the variables:

� = fX 7! 1; Z 7! 2; X3 7! 3; X2 7! 4; X1 7! 5g

pushenv 5

mark A

putref 1

putvar 5

call p1/2

A: mark B
putref 5

putvar 4

call p2/2

B: trim 4
mark C

putref 4

putvar 3

call p3/2

C: trim 3
lastmark

putref 3

putref 2

lastcall (p4/2,3)

Clause Indexing

Often, predicates are implemented by case distinction on
the �rst argument.

Hence, by inspecting the �rst argument, many alternatives
can be excluded.

{ Failure is detected earlier.
{ Backtrack points are removed earlier.
{ Stack frames are removed earlier.

Clause Indexing

Example:

app(X;Y; Z) X = []; Y = Z
app(X;Y; Z) X = [H j X 0]; Z = [H j Z 0]; app(X 0; Y; Z 0)

If the �rst argument is [], then only the �rst clause is
applicable.

If the �rst argument has [|] as its root constructor, then
only the second clause is applicable.

Every other root constructor of the �rst argument will fail.

Both alternatives should be tried only if the �rst argument
is uninitialized variable.

Clause Indexing

Introduce a separate try chain for every possible
constructor.

Inspect the root node of the �rst argument.

Depending on the result, perform an indexed jump to the
appropriate try chain.

Let the predicate p/k de�ned by the sequence of clauses
rr � r1 : : : rm.

The macro tchains rr denotes the sequence of try chains which
correspond to the root constructors occurring in uni�cations
X1 = t.

Clause Indexing

Example:
Consider the predicate app/3. Let the code for its two clauses
start at addresses A1 and A2. Then we get the following four
try chains:

VAR: setbtb // variables
try A1
delbtp

jump A2

NIL: jump A1 // []
CONS: jump A2 // [|]
ELSE: fail // default

Instruction fail handles all constructors besides [] and [|].

fail = backtrack()

Clause Indexing

Then we generate for a predicate p/k:

codeP rr = putref 1

getNode

index p/k

tchains rr
A1: codeC r1

. . .
Am: codeC rm

Clause Indexing

getNode

getNode

R

S f/n

R

f/n

switch (H[S[SP]]) {
case (S,f/n): S[SP] = f/n; break;

case (A,a): S[SP] = a; break;

case (R,): S[SP] = R;

}

Clause Indexing

Instruction index p/k performs an indexed jump to the
appropriate try chain:

A

a

index p/k
PC

A = map(p/k,a)

PC = map(p/k,S[SP]);

SP = SP - 1;

The function map() returns the start address of the appropriate
try chain. Can be de�ned eg. through some hash table.

Cut Operator

We extend the language Proll with the cut operator "!" which
explicitly allows to prune the search space of backtracking.

Example:

branch(X;Y) p(X); !; q1(X;Y)
branch(X;Y) q2(X;Y)

If all the queries before the cut have succeeded, then the choice
is committed: backtracking will return only to backtrack points
preceding the call to the predicate.

Cut Operator

The cut operator should:

restore the register BP by assigning to it BPold from the
current frame;

remove all frames which are on top of the local variables.

Accordingly, we translate the cut into the sequence:

prune

pushenv m

where m is the number of (still alive) local variables of the
clause.

Cut Operator

Example:

branch(X;Y) p(X); !; q1(X;Y)
branch(X;Y) q2(X;Y)

We obtain:

setbtp

try A

delbtp

jump B

A: pushenv 2
mark C

putref 1

call p/1

C: prune
pushenv 2

lastmark

putref 1

putref 2

lastcall(q1/2,2)

B: pushenv 2
putref 1

putref 2

move(2,2)

jump q2/2

Cut Operator

Example:

branch(X;Y) p(X); !; q1(X;Y)
branch(X;Y) q2(X;Y)

. . . or, when using optimizations:

setbtp

try A

delbtp

jump B

A: pushenv 2
mark C

putref 1

call p/1

C: prune
pushenv 2

putref 1

putref 2

move(2,2)

jump q1/2

B: pushenv 2
putref 1

putref 2

move(2,2)

jump q2/2

Cut Operator

prune

BP BP

FP FP

BP = BPold;

Cut Operator

Problem:

If the predicate is de�ned by a single clause, then we have not
stored the old BP inside the stack frame.

For the cut to work also with single-clause predicates or try
chains of length 1, we insert an extra instruction setcut before
the clausal code (or the jump).

Cut Operator

setcut

BP BP

FP FP

BPold = BP;

Cut Operator

Final example: the predicate notP succeeds whenever p fails
and vice versa:

notP(X) p(X); !; fail
notP(X)

where fail always fails.

setbtp

try A

delbtp

jump B

A: pushenv 1
mark C

putref 1

call p/1

C: prune
pushenv 1

fail

popenv

B: pushenv 1
popenv

	WiM
	Proll and WiM architecture
	Construction of Terms
	Translation of Goals
	Unification
	Clauses
	Predicates
	Queries and Programs
	Last Call Optimization
	Stack Frame Trimming
	Clause Indexing
	Cut Operator

