
The war on error
James Chapman

University of Tartu

Practicalities
• 4 weeks of 4 sessions per week

• Monday, 12.15-14.00

• Tuesday, 16.15-18.00

• Wednesday, 12.15-14.00

• Thursday, 10.15-12.00

• It will be assessed by 4 pieces of
coursework and participation. Coursework
will released during each teaching week.

• 10% + 10% + 10% + 15% + 5%

What is this about

• You will learn how to use a programming
language with an advanced, exotic, highly
expressive type system.

• You will learn how to write programs you
cannot write in ordinary languages.

• The language is called Agda and it is a total
functional language that supports
dependent types.

What’s different about
Agda’s style of DTP?

• Agda has a powerful type system that can
encode program specifications and
mathematical propositions.

• The type checker checks that the program
satisfies the type (specification).

• Agda programs are guaranteed to
terminate.

• The slogan is “well-typed programs don’t go
wrong”.

What’s Agda?
• Agda is a dependently typed functional language

developed mainly at Chalmers University of
Technology by Ulf Norell. It is also developed at LMU
Munich and the University of Nottingham.

• It is based on ideas from the swedish Philosopher Per
Martin-Löf’s theory of types (1984)

• In one sense it can be seen as the next logical step
from Haskell. (Both a moving targets though...)

• It is a total functional language. So, conceptually
different from Haskell in this sense.

Do we really need yet
another language?

Sales pitch
• Computer programs in existing languages have bugs.

• The consequences of such bugs can be catastrophic:
• July 28, 1962 -- Mariner I space probe. A formula written on paper in pencil was improperly transcribed into computer code. Destroyed.

• 1982 -- Soviet gas pipeline. The resulting event is reportedly the largest non-nuclear explosion in the planet's history.

• 1985-1987 -- Therac-25 medical accelerator. Patients given wrong dose. At least five patients die.

• 1988 -- Buffer overflow in Berkeley Unix finger daemon. First internet worm.

• 1988-1996 -- Kerberos Random Number Generator. Did not properly “seed" the program's random number generator.

• January 15, 1990 -- AT&T Network Outage. Machines crash when the receive a message that another machine has recovered from a crash.

• 1993 -- Intel Pentium floating point divide. PR disaster. The bug ultimately costs Intel $475 million.

• 1995/1996 -- The Ping of Death. Possible to crash a wide variety of operating systems by sending a malformed "ping" packet.

• June 4, 1996 -- Ariane 5 Flight 501. Overflow on number conversion. Disintegrates 40 seconds into flight.

• November 2000 -- National Cancer Institute, Panama City. Patients given wrong dose. At least eight patients die.

• To avoid these problems we must formally prove that
our programs are correct, then bugs are impossible.

Counter argument
• Formal verification is too expensive and

time consuming even for mission critical
applications.

• How do we know our specification is what
we intended? Maybe it is too weak/holds
vacuously? We cannot check this formally.

• Proving that our program is correct doesn’t
mean that it will be executed correctly:

• We would need the whole toolchain, OS,
and hardware to be formally verified.

Revised sales pitch
• We can support a ‘pay-as-you go’ approach to

specifications in Agda. We do not have to encode a
very detailed specification in the type, it can be as
detailed as we like/focus on a particular aspect/be
refined later. We can even turn off some checkers
(e.g. termination checker).

• The type should reflect our understanding of the
program and the invariants we are aware of/think
are important.

• We should use the type system to help us rule out
really stupid mistakes as we are writing the program
but it shouldn’t hold us back.

An argument against
sophisticated type systems

• The fastest possible code is written in
assembler.

• Type systems just get in the way.

• Expert programmers (e.g. games
developers) don’t need the type system;
they program on the ‘bare metal’.

Counter argument

• The fastest possible code is written in
assembler. ✔

• Type systems do get in the way sometimes. ✔

• Expert programmers (e.g. games developers)
don’t need the type system; they program on
the ‘bare metal’. ✖

The Next Mainstream
Programming Language:
A Game Developer’s Perspective

Tim Sweeney
Epic Games

Game Development

Game Development: Gears of War

 Resources
– ~10 programmers
– ~20 artists
– ~24 month development cycle
– ~$10M budget

 Software Dependencies
– 1 middleware game engine
– ~20 middleware libraries
– OS graphics APIs, sound, input, etc

Performance

 When updating 10,000 objects at 60 FPS,
everything is performance-sensitive

 But:
– Productivity is just as important

– Will gladly sacrifice 10% of our performance
for 10% higher productivity

– We never use assembly language

 There is not a simple set of “hotspots” to
optimize!

That’s all!

Agda for gaming?

• Perhaps not yet. But,

• Biggest challenges facing programmers now are
reliability and exploiting concurrency/parallelism.

• Type systems can help here.

• Optimizing compilers can make use of extra type
information.

• E.g. Java does lots of array bounds checking. In
Agda we can guarantee that we never go out of
bounds.

Why study obscure
experimental languages?

• Sometimes the language may come into common use
at a latter date. Eg. too many to list.

• Sometimes the style of programming may come into
common use at a later date (functional programming
or dependent types). Eg. Microsoft F#

• Features from exp. languages are often added to
mainstream languages. Eg. λ-expressions in C#,
generics, limited support for dependent types in
Haskell. Research feeds directly into practice.

What’s next in this
lecture?

• In introduction to dependent types using the
medium of Agda

• Simple functional programming

• Emphasize what’s different from Haskell.

• Recursion and induction, proofs and programs

• From simple types to dependent types

• Typechecking

Don’t worry!
• The rest of this lecture will go quickly into

dependent types to give you a taste of what
is to come.

• The intention is to explain the how to
think about this style of programming - the
mindset. You don’t have to understand all
the technical details.

• Don’t worry, the first coursework will be
about use simple types and the rest of the
course will proceed more slowly.

Do worry!

• I strongly recommend you attend lectures
and labs otherwise you will find this course
very difficult.

• You will be able to do substantial parts of
the coursework in the session with
assistance from me.

• This course does not follow a standard
textbook!

Functional programming
a reminder

• Functional programming (Haskell etc.)
based on a different conceptual model to
imperative programming (C, Java, etc.)

• Imperative programming is based on the
idea of manipulating values stored in
memory.

• Functional programming is based on the
idea that a program is a mathematical
function.

Fibonacci numbers

fib : Nat → Nat
fib z = z
fib (s z) = s z
fib (s (s n) =
 fib (s n) + fib n

The fibonacci numbers can be defined by the following
function:

How do we run this function?
We don’t need a computer we can calculate it, by blindly

running the machinery by hand.

A simple type and a
function that uses it

data List (A : Set) : Set where
 [] : List A
 :: : A → List A → List A

++ : ∀{A} → List A → List A → List A
[] ++ as’ = as’
(a :: as) ++ as’ = a :: (as ++ as’)

We are using Agda syntax but this could just as well be a
Haskell program

What did we just do?
• We defined a new type constructor List that

takes a type and

• data List (A : Set): Set where

• We explained the canonical ways to construct
inhabitants of that type:

• [] : List A

• _::_ : A → List A → List A

• We then defined a function by explaining only how
to deal with canonical inhabitants.

Why is our function
definition ok?

• What about all the other lists that aren’t just nil or
cons?

• Compare with induction on natural numbers. We have
a case for 0 and a case for (n + 1). This is enough for
all natural numbers. The proof principle of induction
guarantees this. We have something simillar for lists.

And this is exactly what
we did...

• Firstly, we defined a type signature for our new
function:

• Secondly, we defined the function by explaining what
to do with the two canonical cases (for the first list):

++ : ∀{A} → List A → List A → List A

[] ++ as’ = as’
(a :: as) ++ as’ = a :: (as ++ as’)

Are we satisfied with our
function definition?

• We have definitely covered all the cases of the input:

• We dealt with nil and cons for the first argument.

• We dealt with any list for the second argument.

• But, how do we know our program will terminate? Is
our recursion ok or will it loop forever?

•

•

• Our definition is justified by structural recursion.

[] ++ as’ = as’

(a :: as) ++ as’ = a :: (as ++ as’)

Agda and termination
• In Agda, programs can’t go wrong.

• In Haskell programs can loop for ever - we can define
functions by general recursion.

• Eg. f x = f x

• In Agda we can only use structural recursion (make
recursive calls on structurally smaller arguments).

• Eg. f (s n) = f n + f n

• General recursion is a dubious logical principle:

•GR : (P : Set) → (P → P) → P

Agda and Logic
• Agda’s type system is a consistent logic.

• Type = logical proposition. (function type is the same
as logical implication)

• Program = Proof.

• Recursion = Induction.

• Recursive call = Inductive hypothesis.

• The logic is constructive/intuitionistic.

• The idea here is that both proofs and programs are
based on the underlying concept of an algorithm.

Comparing induction
and recursion

data Nat : Set where
 z : Nat
 s : Nat → Nat

First we define Peano style natural numbers

Next we define addition by structural recursion on the
first argument:

+ : Nat → Nat → Nat
z + n = n
(s m) + n = s (m + n)

A simple proof by
induction on Nat

theorem : (n : Nat) → n == n + z
theorem z = 1?
theorem (s n) = 2?

1? : z == z + z

by definition of +, the RHS z + z computes to z, so we’re done.

2? : s n == (s n) + z

by definition of +, the RHS (s n) + z computes to s (n + z),

and we know by inductive hypothesis n == n + z, so we’re done.

What’s a dependent
type?

• It’s a type that depends on a piece of data. List is a
type that depends on another type.

• E.g. a type indexed by a natural number:

• T : Nat -> Set. So, T z : Set

• This allows types to refer to data and programs. This
paves the way for encoding specifications as types.

The basic dependent type is
the ∏-type

• In simply typed programming, for types
S, T : Set, we have functions space.

• S → T

• which corresponds to logical implication.

• In dependently typed programming, for types
S : Set, T : S → Set we have dependent
function space (or ∏-type)

•(s : S) → T s

• which corresponds to universal quantification. (forall)

Agda supports “full-blown”
dependently types

• Computation (green things) can occur in types:

•f : (n : Nat) → T (fib n)

• As well as defining inductive data types we can define
types by recursion:

•T : Nat → Set

•T z = Nat

•T (s n) = Nat → T n

A dependent type and a
function that uses it

data Vec (A : Set) : Nat → Set where
 [] : Vec A z
 :: : ∀ {n} → A → Vec A n
 → Vec A (s n)

++ : ∀{A m n} → Vec A m → Vec A n
 → Vec A (m + n)
[] ++ as’ = as’
(a :: as) ++ as’ = a :: as ++ as’

What has changed?

• We have an extra guarantee that the length of the new
vector is the sum of the lengths of our two old
vectors.

• This is checked by the type checker. If we’d made a
mistake

• e.g.(a :: as) ++ as’ = as ++ as’

• then the typechecker would complain about the length
when we wrote this line: e.g. “(s m) + n is not equal to
m + n”

Type checking
• Type checking a dependently typed programming is

more involved:

• We need to perform computation on open terms
during type checking

• In simple types there is a clear distinction:

• Computation only occurs at the term level

• Types, by comparision, are quite inert.

• In dependent types the boundaries are
considerably blurred, ordinary terms and
computation can occur almost anywhere.

Type inference?

• In Haskell we don’t even have to write a type. It
can often be inferred.

• In Agda the type comes first always.

• We cannot infer the domains of dependent
functions and the ranges of dependent pairs.

• All is not lost however, as there is so much type
information around lots of things can be left
implicit and are filled in by the system, or are
ruled out altogether.

Head of a vector
head : {A : Set}{n : Nat} → Vec A (s n) → A
head (a :: as) = a

• Don’t need a case for the empty vector.

• Don’t need to supply arguments A and n to the
function. These can be inferred from the type of the
argument vector.

• Don’t even need to give types for A and n. These can
be inferred from the definition of vectors.

head : ∀{A n} → Vec A (s n) → A

Type checking Lists
data List (A : Set) : Set where
 [] : List A
 :: : A → List A → List A

+ : ∀{A} → List A → List A → List A
[] + ws = ws
(v :: vs) + ws = v :: (vs + ws)

Typing constraints that LHS = RHS.
List A = List A
List A = List A

Type checking Vectors
data Vec (A : Set) : Nat → Set where
 [] : Vec A z
 :: : ∀{n} → A → Vec A n →
 Vec A (s n)

++ : ∀{A m n} → Vec A m → Vec A n →
 Vec A (m + n)
[] ++ ws = ws
(v :: vs) ++ ws = v :: (vs ++ ws)

Typing constraints that LHS = RHS:
Vec A (zero + n) = Vec A n
Vec A (suc m + n) = Vec A (suc (m + n))

A more detailed
introduction to Agda

Agda’s features
• Agda (2) was written by Ulf Norell at Chalmers.

• Agda is implemented in Haskell.

• It supports: dependent types;

• Inductive families and dependent pattern matching;

• Coinduction;

• Dependent records;

• Some basic compilation to Haskell;

• Interactive development.

• It has a module system and a “standard library”.

First the theory...

• Martin-Löf type theory was created in the late 70s.

• The first version was vulnerable to a variant of
Russell’s paradox. It had Set : Set.

• Martin-Löf’s major contribution are related to
equality and universes.

• Prior to this the was Howard’s paper on
propositions-as-types.

• Other people also contributed and had competing
systems.

Coq
• Coq is developed at INRIA in France and is the

market leader in dependently typed interactive
theorem provers

• Has a large library and many developers and users.

• Has been used to develop:

• Proof of the 4 colour theorem - too many cases to
be checked by hand.

• A certifying compiler.

• Focussed on theorem proving, the core
implementation is getting a bit ‘long in the tooth’.

Cayenne

• First major dependently typed
programming language.

• Developed by Lennart Augustsson at
Chalmers.

• Borrowed it’s syntax from Haskell

• Flawed type system and type checker.
Sometimes looped on well-typed programs.

Epigram 1

• Developed by McBride and McKinna in
Durham and Nottingham.

• Inductive families, dependent pattern
matching, interactive programming 2D
syntax.

• Horrid interface and flawed implementation

• Agda 2 can be considered a good
implementation of Epigram 1.

Epigram 2

• Currently under development in Scotland,
England, Sweden and Estonia.

• New exciting type system, observational
equality, quotients, generic programming,
coinduction.

• Perhaps Agda 3 will be a good
implementation of this...

Installing Agda
• First google for Agda wiki.

• We will be using Agda version 2.2.6 in emacs

• Simplified advice for Mac/Linux

• Install version 6.10/6.12 of ghc

• Install cabal-install if it is not already installed.

• $ cabal install Agda, then setup emacs mode.

• For Windows follow instructions on wiki

• I will be on hand to help!

Creating an Agda file

• Agda files end in .agda. Create a new one in
emacs.

• Agda files contain one top level module:

•module test where

• The filename “test.agda” and the module
name should agree. This is case sensitive.

My first program

module test where

data Nat : Set where
 z : Nat
 s : Nat -> Nat

pred : Nat -> Nat
pred z = z
pred (s n) = n

Type the following into the emacs buffer for “test.agda”

Choose load from the Agda menu. The definition should get
coloured in and an empty buffer should appear below.

Developing a function
interactively

Type the following in the Agda buffer for “test.agda”

+ : Nat -> Nat -> Nat
m + n = ?

Choose load from the Agda menu

+ : Nat -> Nat -> Nat
m + n = { }0

You should see on goal in the buffer below

?0 : Nat

Developing a function
interactively

Type m between the curly braces (the “goal”)

m + n = {m }0

Right click between the curly braces and choose “case”

+ : Nat -> Nat -> Nat
z + n = { }0
s y + n = { }1

If you don’t like Agda’s name choices edit and reload.
Fill in the goal 0, right click and choose “give”.

Developing a program
interactively

In the second goal type “s ?” and give.

s m + n = s { }1

You have a new goal.
Fill it in with the recursive call/inductive hypothesis and

give.

Your definition is finished, test it on 2 + 2 by choosing
“evaluate term to normal form” from the Agda menu

Names and unicode
• Agda is very liberal with names. Type constructors,

data constructors, functions and variables can be
uppercase or lower case.

• You can also use unicode characters. By typing in
(limited) latex commands. Eg. \rightarrow or \lambda

• Super/sub script are preceded with \ unlike latex. Eg.
\pi_0

• To see how to type a character: C-u C-x =

• infix operators are defined as _op_ but this can be
more complex. Eg. if_then_else

