
The war on error
James Chapman

University of Tartu



Practicalities
• 4 weeks of 4 sessions per week

• Monday, 12.15-14.00

• Tuesday, 16.15-18.00

• Wednesday, 12.15-14.00

• Thursday, 10.15-12.00

• It will be assessed by 4 pieces of 
coursework and participation. Coursework 
will released during each teaching week. 

• 10% + 10% + 10% + 15% + 5%



What is this about

• You will learn how to use a programming 
language with an advanced, exotic, highly 
expressive type system.

• You will learn how to write programs you 
cannot write in ordinary languages.

• The language is called Agda and it is a total 
functional language that supports 
dependent types.



What’s different about 
Agda’s style of DTP?

• Agda has a powerful type system that can 
encode program specifications and 
mathematical propositions.

• The type checker checks that the program 
satisfies the type (specification).

• Agda programs are guaranteed to 
terminate.

• The slogan is “well-typed programs don’t go 
wrong”.



What’s Agda?
• Agda is a dependently typed functional language 

developed mainly at Chalmers University of 
Technology by Ulf Norell. It is also developed at LMU 
Munich and the University of Nottingham.

• It is based on ideas from the swedish Philosopher Per 
Martin-Löf’s theory of types (1984)

• In one sense it can be seen as the next logical step 
from Haskell. (Both a moving targets though...)

• It is a total functional language. So, conceptually 
different from Haskell in this sense.



Do we really need yet 
another language?



Sales pitch
• Computer programs in existing languages have bugs.

• The consequences of such bugs can be catastrophic:
• July 28, 1962 -- Mariner I space probe. A formula written on paper in pencil was improperly transcribed into computer code. Destroyed.

• 1982 -- Soviet gas pipeline. The resulting event is reportedly the largest non-nuclear explosion in the planet's history.

• 1985-1987 -- Therac-25 medical accelerator. Patients given wrong dose. At least five patients die.

• 1988 -- Buffer overflow in Berkeley Unix finger daemon. First internet worm.

• 1988-1996 -- Kerberos Random Number Generator. Did not properly “seed" the program's random number generator.

• January 15, 1990 -- AT&T Network Outage. Machines crash when the receive a message that another machine has recovered from a crash.

• 1993 -- Intel Pentium floating point divide. PR disaster. The bug ultimately costs Intel $475 million.

• 1995/1996 -- The Ping of Death. Possible to crash a wide variety of operating systems by sending a malformed "ping" packet.

• June 4, 1996 -- Ariane 5 Flight 501. Overflow on number conversion. Disintegrates 40 seconds into flight. 

• November 2000 -- National Cancer Institute, Panama City. Patients given wrong dose. At least eight patients die.

• To avoid these problems we must formally prove that 
our programs are correct, then bugs are impossible.



Counter argument
• Formal verification is too expensive and 

time consuming even for mission critical 
applications.

• How do we know our specification is what 
we intended? Maybe it is too weak/holds 
vacuously? We cannot check this formally.

• Proving that our program is correct doesn’t 
mean that it will be executed correctly:

• We would need the whole toolchain, OS, 
and hardware to be formally verified.



Revised sales pitch
• We can support a ‘pay-as-you go’ approach to 

specifications in Agda. We do not have to encode a 
very detailed specification in the type, it can be as 
detailed as we like/focus on a particular aspect/be 
refined later.  We can even turn off some checkers 
(e.g. termination checker).

• The type should reflect our understanding of the 
program and the invariants we are aware of/think 
are important.

• We should use the type system to help us rule out 
really stupid mistakes as we are writing the program 
but it shouldn’t hold us back.



An argument against 
sophisticated type systems

• The fastest possible code is written in 
assembler. 

• Type systems just get in the way.

• Expert programmers (e.g. games 
developers) don’t need the type system; 
they program on the ‘bare metal’.



Counter argument

• The fastest possible code is written in 
assembler. ✔

• Type systems do get in the way sometimes. ✔

• Expert programmers (e.g. games developers) 
don’t need the type system; they program on 
the ‘bare metal’. ✖



The Next Mainstream 
Programming Language:
A Game Developer’s Perspective

Tim Sweeney
Epic Games



Game Development



Game Development: Gears of War

 Resources
– ~10 programmers
– ~20 artists
– ~24 month development cycle
– ~$10M budget

 Software Dependencies
– 1 middleware game engine
– ~20 middleware libraries
– OS graphics APIs, sound, input, etc



Performance

 When updating 10,000 objects at 60 FPS, 
everything is performance-sensitive

 But:
– Productivity is just as important

– Will gladly sacrifice 10% of our performance
for 10% higher productivity

– We never use assembly language

 There is not a simple set of “hotspots” to 
optimize!

That’s all!



Agda for gaming? 

• Perhaps not yet. But,

• Biggest challenges facing programmers now are 
reliability and exploiting concurrency/parallelism.

• Type systems can help here.

• Optimizing compilers can make use of extra type 
information.

• E.g. Java does lots of array bounds checking. In 
Agda we can guarantee that we never go out of 
bounds.



Why study obscure 
experimental languages?

• Sometimes the language may come into common use 
at a latter date. Eg. too many to list.

• Sometimes the style of programming may come into 
common use at a later date (functional programming 
or dependent types). Eg. Microsoft F#

• Features from exp. languages are often added to 
mainstream languages. Eg. λ-expressions in C#, 
generics, limited support for dependent types in 
Haskell. Research feeds directly into practice.



What’s next in this 
lecture?

• In introduction to dependent types using the 
medium of Agda

• Simple functional programming

• Emphasize what’s different from Haskell.

• Recursion and induction, proofs and programs

• From simple types to dependent types

• Typechecking



Don’t worry!
• The rest of this lecture will go quickly into 

dependent types to give you a taste of what 
is to come.

• The intention is to explain the how to 
think about this style of programming - the 
mindset. You don’t have to understand all 
the technical details.

• Don’t worry, the first coursework will be 
about use simple types and the rest of the 
course will proceed more slowly.



Do worry!

• I strongly recommend you attend lectures 
and labs otherwise you will find this course 
very difficult.

• You will be able to do substantial parts of 
the coursework in the session with 
assistance from me.

• This course does not follow a standard 
textbook!



Functional programming
a reminder

• Functional programming (Haskell etc.) 
based on a different conceptual model to 
imperative programming (C, Java, etc.)

• Imperative programming is based on the 
idea of manipulating values stored in 
memory.

• Functional programming is based on the 
idea that a program is a mathematical 
function.



Fibonacci numbers

fib : Nat → Nat
fib z        = z
fib (s z)    = s z
fib (s (s n) = 
  fib (s n) + fib n

The fibonacci numbers can be defined by the following 
function:

How do we run this function?
We don’t need a computer we can calculate it, by blindly 

running the machinery by hand.



A simple type and a 
function that uses it

data List (A : Set) : Set where
  []   : List A
  _::_ : A → List A → List A

_++_ : ∀{A} → List A → List A → List A
[]        ++ as’ = as’
(a :: as) ++ as’ = a :: (as ++ as’)

We are using Agda syntax but this could just as well be a 
Haskell program



What did we just do?
• We defined a new type constructor List that 

takes a type and 

• data List (A : Set): Set where

• We explained the canonical ways to construct 
inhabitants of that type:

• []   : List A

• _::_ : A → List A → List A

• We then defined a function by explaining only how 
to deal with canonical inhabitants.



Why is our function 
definition ok?

• What about all the other lists that aren’t just nil or 
cons?

• Compare with induction on natural numbers. We have 
a case for 0 and a case for (n + 1). This is enough for 
all natural numbers. The proof principle of induction 
guarantees this. We have something simillar for lists.



And this is exactly what 
we did...

• Firstly, we defined a type signature for our new 
function:

• Secondly, we defined the function by explaining what 
to do with the two canonical cases (for the first list):

_++_ : ∀{A} → List A → List A → List A

[]       ++ as’ = as’
(a :: as) ++ as’ = a :: (as ++ as’)



Are we satisfied with our 
function definition?

• We have definitely covered all the cases of the input:

• We dealt with nil and cons for the first argument.

• We dealt with any list for the second argument.

• But, how do we know our program will terminate? Is 
our recursion ok or will it loop forever?

•  

•  

• Our definition is justified by structural recursion.

[] ++ as’ = as’

(a :: as) ++ as’ = a :: (as ++ as’)



Agda and termination
• In Agda, programs can’t go wrong.

• In Haskell programs can loop for ever - we can define 
functions by general recursion.

• Eg. f x = f x

• In Agda we can only use structural recursion (make 
recursive calls on structurally smaller arguments).

• Eg. f (s n) = f n + f n

• General recursion is a dubious logical principle:

•GR : (P : Set) → (P → P) → P



Agda and Logic
• Agda’s type system is a consistent logic.

• Type = logical proposition. (function type is the same 
as logical implication)

• Program = Proof.

• Recursion = Induction.

• Recursive call = Inductive hypothesis.

• The logic is constructive/intuitionistic.

• The idea here is that both proofs and programs are 
based on the underlying concept of an algorithm.



Comparing induction 
and recursion

data Nat : Set where
  z : Nat
  s : Nat → Nat 

First we define Peano style natural numbers

Next we define addition by structural recursion on the 
first argument:

_+_ : Nat → Nat → Nat
z     + n = n
(s m) + n = s (m + n)



A simple proof by 
induction on Nat

theorem : (n : Nat) → n == n + z
theorem z = 1?
theorem (s n) = 2?

1? : z == z + z

by definition of +, the RHS z + z computes to z, so we’re done.

2? : s n == (s n) + z

by definition of +, the RHS (s n) + z computes to s (n + z),

and we know by inductive hypothesis n == n + z, so we’re done.
           



What’s a dependent 
type?

• It’s a type that depends on a piece of data. List is a 
type that depends on another type.

• E.g. a type indexed by a natural number:

• T : Nat -> Set. So, T z : Set

• This allows types to refer to data and programs. This 
paves the way for encoding specifications as types.



The basic dependent type is 
the ∏-type

• In simply typed programming, for types                     
S, T : Set, we have functions space.

•  S → T

• which corresponds to logical implication.

• In dependently typed programming, for types          
S : Set, T : S → Set we have dependent 
function space (or ∏-type)

•(s : S) → T s

• which corresponds to universal quantification. (forall)



Agda supports “full-blown” 
dependently types

• Computation (green things) can occur in types:

•f : (n : Nat) → T (fib n)

• As well as defining inductive data types we can define 
types by recursion:

•T : Nat → Set

•T z = Nat

•T (s n) = Nat → T n



A dependent type and a 
function that uses it

data Vec (A : Set) : Nat → Set where
  []  : Vec A z
  _::_ : ∀ {n} → A → Vec A n  
         → Vec A (s n)

_++_ : ∀{A m n} → Vec A m → Vec A n
       → Vec A (m + n)
[]        ++ as’ = as’
(a :: as) ++ as’ = a :: as ++ as’



What has changed?

• We have an extra guarantee that the length of the new 
vector is the sum of the lengths of our two old 
vectors.

• This is checked by the type checker.  If we’d made a 
mistake

•  e.g.(a :: as) ++ as’ = as ++ as’

• then the typechecker would complain about the length 
when we wrote this line: e.g. “(s m) + n is not equal to 
m + n”



Type checking
• Type checking a dependently typed programming is 

more involved:

• We need to perform computation on open terms 
during type checking

• In simple types there is a clear distinction:

• Computation only occurs at the term level

• Types, by comparision, are quite inert.

• In dependent types the boundaries are 
considerably blurred, ordinary terms and 
computation can occur almost anywhere.



Type inference?

• In Haskell we don’t even have to write a type. It 
can often be inferred. 

• In Agda the type comes first always.

• We cannot infer the domains of dependent 
functions and the ranges of dependent pairs.

• All is not lost however, as there is so much type 
information around lots of things can be left 
implicit and are filled in by the system, or are 
ruled out altogether.



Head of a vector 
head : {A : Set}{n : Nat} → Vec A (s n) → A
head (a :: as) = a

• Don’t need a case for the empty vector.

• Don’t need to supply arguments A and n to the 
function. These can be inferred from the type of the 
argument vector.

• Don’t even need to give types for A and n. These can 
be inferred from the definition of vectors.

head : ∀{A n} → Vec A (s n) → A



Type checking Lists
data List (A : Set) : Set where
  []  : List A
  _::_ : A → List A → List A

_+_ : ∀{A} → List A → List A → List A
[]        + ws = ws
(v :: vs) + ws = v :: (vs + ws)

Typing constraints that LHS = RHS.
List A = List A
List A = List A



Type checking Vectors
data Vec (A : Set) : Nat → Set where
  []   : Vec A z
  _::_ : ∀{n} → A → Vec A n → 
         Vec A (s n)

_++_ : ∀{A m n} → Vec A m → Vec A n → 
       Vec A (m + n)
[]        ++ ws = ws 
(v :: vs) ++ ws = v :: (vs ++ ws)

Typing constraints that LHS = RHS:
Vec A (zero  + n) = Vec A n
Vec A (suc m + n) = Vec A (suc (m + n))



A more detailed 
introduction to Agda



Agda’s features
• Agda (2) was written by Ulf Norell at Chalmers.

• Agda is implemented in Haskell.

• It supports: dependent types;

• Inductive families and dependent pattern matching;

• Coinduction;

• Dependent records;

• Some basic compilation to Haskell;

• Interactive development.

• It has a module system and a “standard library”.



First the theory...

• Martin-Löf type theory was created in the late 70s.

• The first version was vulnerable to a variant of 
Russell’s paradox. It had Set : Set.

• Martin-Löf’s major contribution are related to 
equality and universes.

• Prior to this the was Howard’s paper on 
propositions-as-types. 

• Other people also contributed and had competing 
systems.



Coq
• Coq is developed at INRIA in France and is the 

market leader in dependently typed interactive 
theorem provers

• Has a large library and many developers and users. 

• Has been used to develop:

• Proof of the 4 colour theorem - too many cases to 
be checked by hand.

• A certifying compiler.

• Focussed on theorem proving, the core 
implementation is getting a bit ‘long in the tooth’.



Cayenne

• First major dependently typed 
programming language.

• Developed by Lennart Augustsson at 
Chalmers.

• Borrowed it’s syntax from Haskell

• Flawed type system and type checker. 
Sometimes looped on well-typed programs.



Epigram 1

• Developed by McBride and McKinna in 
Durham and Nottingham.

• Inductive families, dependent pattern 
matching, interactive programming 2D 
syntax.

• Horrid interface and flawed implementation

• Agda 2 can be considered a good 
implementation of Epigram 1.



Epigram 2

• Currently under development in Scotland, 
England, Sweden and Estonia.

• New exciting type system, observational 
equality, quotients, generic programming, 
coinduction.

• Perhaps Agda 3 will be a good 
implementation of this...



Installing Agda
• First google for Agda wiki.

• We will be using Agda version 2.2.6 in emacs

• Simplified advice for Mac/Linux

• Install version 6.10/6.12 of ghc

• Install cabal-install if it is not already installed.

• $ cabal install Agda, then setup emacs mode.

• For Windows follow instructions on wiki

• I will be on hand to help!



Creating an Agda file

• Agda files end in .agda. Create a new one in 
emacs.

• Agda files contain one top level module:

•module test where

• The filename “test.agda” and the module 
name should agree. This is case sensitive.



My first program

module test where

data Nat : Set where
  z : Nat
  s : Nat -> Nat

pred : Nat -> Nat
pred z     = z
pred (s n) = n

Type the following into the emacs buffer for “test.agda”

Choose load from the Agda menu. The definition should get 
coloured in and an empty buffer should appear below.



Developing a function 
interactively

Type the following in the Agda buffer for “test.agda”

_+_ : Nat -> Nat -> Nat
m + n = ?

Choose load from the Agda menu

_+_ : Nat -> Nat -> Nat
m + n = { }0

You should see on goal in the buffer below

?0 : Nat



Developing a function 
interactively

Type m between the curly braces (the “goal”)

m + n = {m }0

Right click between the curly braces and choose “case”

_+_ : Nat -> Nat -> Nat
z + n   = { }0
s y + n = { }1

If you don’t like Agda’s name choices edit and reload.
Fill in the goal 0, right click and choose “give”.



Developing a program 
interactively

In the second goal type “s ?”  and give.

s m + n = s { }1

You have a new goal.
Fill it in with the recursive call/inductive hypothesis and 

give.

Your definition is finished, test it on 2 + 2 by choosing 
“evaluate term to normal form” from the Agda menu



Names and unicode
• Agda is very liberal with names. Type constructors, 

data constructors, functions and variables can be 
uppercase or lower case.

• You can also use unicode characters. By typing in 
(limited) latex commands. Eg. \rightarrow or \lambda

• Super/sub script are preceded with \ unlike latex. Eg.  
\pi\_0

• To see how to type a character: C-u C-x =

• infix operators are defined as _op_ but this can be 
more complex. Eg. if_then_else


