MTAT.05.105 Type Theory
Untyped A-calculus



Syntax of A-calculus

@ Assume a countable set of variables.
o Syntax of A-terms in BNF:

e = variable
| (el es) application
| (Az.e) abstraction

o Bracketing conventions:

eres ... en = ((...(e1e2)...)en)

Az.ejex ...e, = (Az. (e1e2 ... e))

AZ1 T2 ... Tp.e = (Az1. (Az2. (.. (AZp. €)...))
o Examples:

Az. T ((Az. (Af. f 2)) y) (Az. 2)



Syntax of A-calculus

Note: pure A-calculus "talks” only about function.

There are no numbers or other data types.

They are not needed, as they can be expressed as A-terms.

However, for convenience, we often use numbers and
arithmetic/logic operations, as they would be ”built-in”.

We also use macro-definitions (must be non-recursive).

Examples:

Azy. z+y

AT. 2%

AZ. T

ATY. T

Afgz. fz(g9z)



Free and bound variables

@ An occurence of a variable is a binding occurence if it is
defined by a lambda.

@ An occurence is bound if it is in the scope of a binding
occurrence with the same name.

@ Other occurrences are free.

(Az. y z) (Ay. ; Y)

free free
bound bound



Free and bound variables

o Free variables are defined by induction:

FV(@) = {a}
FV(el 62) = FV(el) U FV(ez)
FV(Az.e) = FV(e) — {z}

@ A-terms without free variables are closed.
o Examples:

FV(Azy. z y) =0
FV(Az. (A\y.z) (Az.y)) = {z}



Qa-conversion

@ Names of bound variables do not matter!

@ )\-terms e; and e, are a-congruent (denoted by e; =, ep) if
they are identical up to renaiming of bound variables.

o Examples:

Az. T =4 AY. Y

Az. fz =a Az.f 2z

Az. (My-y)z =a Ay (MY )y
ALY TH+Y Fa AYY.Y+Y



Substitution
The fundamental principle of computation in A-calculus is
replacement of formal by actual parameters.
To evaluate an application (Az.e;) e, substitute e, for z in
e;.
Substitution is denoted by e[z — ea].
Must avoid variable capture.

Examples:

(Az. yz)ly— Az.2] = Az. (Az.2)z
(Az. yz)[z— Az.2] = Az.yz
(Az. yz)[y— Az.z] # AIz. (Az.2)z



Substitution

Definition of capture avoiding substitution:

Ylz — €]

(e1e2)[z — €]

(Ay.e1)[z — €]

e ifz=y
y otherwise
(er[z — e]) (e2[z — e])

Ay.e1
Ay.ei[z — €]
Az.ei|y — z][z — e]

ifz=y
if y ¢ FV(e)
otherwise



B-reduction

The evaluation of A-terms is specified by a repeated
application of reduction rules.

B-reduction rule:
(Az.e1) e

—3 81[:1} — 82]

A subexpression in a form (Az.e;)es is called a (3-)redex.

Note: a A-term may any number redexes.

A X-term without any (B-)redexes is in (3-)normal form.

Examples:

Az.z (Ay. z)
Az. (Ay.y)3

M. f((Az.z)3) (Az.2)4)

(Af. f((Pz.2)3)) (Az.2)

no redexes (ie. normal form)
a single redex
two redexes

two (overlapping) redexes



B-reduction

Single-step G-reduction:

(Az.e1)ex —p e1]z — eo

€1 —p €2 €1 —p €2
€1€p —pg €2€p €g €1 —g €pe2

€1 —g €2
AT.e; —p AT.€o




B-reduction

Multi-step S-reduction:

€1 —g €2
€1 —p €2 € —»pé€

€1 —»p €2 €2 >3 €3

€1 —»p €3

Note: B-reduction, as defined, is highly non-deterministic.

Doesn’t determine which redex to reduce next.

Example:

(Af. f((Az.2)3)) (Az.z)

(Af. f((Az.2)3)) (A\z.2)

B
B
B
B
B
B

(Az.z) ((Az.z) 3))
(Az.z)3

3

(Af. f3) (Az.z)
(Az.z)3

3



Reduction orders

The reduction order doesn’t matter!

Church-Rosser theorem: for any A-terms eg, €1 and es, if
eo g e1 and ey —g ez then there exists ez such that

e1 —g es and ey —g es.

Corollary: if a A-term has a normal form, the normal form
is unique.

Note: there exist A-terms without a normal form.

Example:
(Az.zz)(Az.22) —p5 (Az.22)(AT.TI)
—g (Az.zz)(Az.T2)
—g (Az.zz)(Az.TT)
(Az.zz)(Az.zT)

B



Reduction orders

@ The reduction order does matter!

@ Normal order: always reduce a leftmost-outermost redex.

(Az.y)((Az.zz)(Az.ZT2)) —B ¥

o Applicative order: always reduce a leftmost-innermost

redex.
(Az.y)((Az.z z)(Az. z T))

—g  (Az.y)(Az.zz)(Az. 2 T))

@ Normalization Theorem: the normal order reduction
sequence reaches a normal form whenever it exists for a
given A-term.



Weak head normal forms

e Evaluation inside the function bodies (ie. under lambdas)
is difficult to implement efficiently.

o Thefore, usually a weaker notion of normal forms is used.

@ A A-term e is in weak head normal form if it is in a form

_ ) ze1...em m > 0
| Az.e

@ Aside: a A-term e is in head normal form if

e=AL1...Tp.T€E1 ... Em n,m>0



Big-step semantics
B-reduction with some specified reduction order gives a
low-level view of evaluation (small-step semantics).

While sufficient for reasoning about evaluation, it’s not
very good for automated evaluation.

Natural semantics (also called big-step semantics) defines a
procedure for program evaluation.

Use v to represent a value (a A-term in WHNF).
Notation e | v denotes ”e evaluates to v”.



Big-step semantics

o Evaluation rules:

var

zlz Az.e | Az.e abs

e1l Az.es exlvs es[z— va] | v

(e1e2) | vs

appE

@ The rule appE corresponds to the eager evaluation
(applicative order reduction).

@ The rule corresponding to the normal order reduction:

e1lAz.es eslzren] v

(ere2) L v

appL



Soundness of natural semantics

@ Theorem: If e | v then e —g v.
@ Proof by induction over the structure of the proof tree.
@ Base cases are trivial:

-Ifzlz var then z —4 z.
- If Az.e | Aze 90S then Az.e —pg AT.e.
o Otherwise, suppose the last rule was for an application:

e1 Ll Az.es es[z—en] v

appL
(e1e2) L v PP
Chain these together:
el e initial term
—g (Az.e3)ez by ind. hyp.
—g  es3[T — es] B-reduction

—»g v by ind. hyp.



Programming in A-calculus

@ A-calculus is a Turing complete programming language.

@ Church thesis: Every computable function is representable
in pure A-calculus.

@ Booleans:
true = Azy.z (= K)
false = Azy.y
cond = Mt.t true false

o Natural numbers (Church numerals):

n = ANz ffz

succ = An.Afz.nf(fz)
iszero = An.n (\z. false) true
add = mn Afz.mf(nfz)



Programming in A-calculus

o Curry’s paradoxial combinator:
Y = Af.(Az.f(zz)) (Az.f(z z))

o Combinator Y is a fixed point combinator:

Ye —p (Az.e(zz))(Az.e(z))
—g e((Az.e(zz)) (Az.e(z2)))
= e(Ye)

o Fixed point combinators can be used to define recursive
functions.

o Example:

fact =Y Af.An.if (n = 0)thenlelsenx f(n — 1)



